苏海,余松森,杨珊.基于分离训练与图像去噪的频率域彩色图像隐写方法[J]. 微电子学与计算机,2024,41(2):28-36. doi: 10.19304/J.ISSN1000-7180.2023.0034
引用本文: 苏海,余松森,杨珊.基于分离训练与图像去噪的频率域彩色图像隐写方法[J]. 微电子学与计算机,2024,41(2):28-36. doi: 10.19304/J.ISSN1000-7180.2023.0034
SU H,YU S S,YANG S. The color image steganography in frequency domain based on separation training and image denoising[J]. Microelectronics & Computer,2024,41(2):28-36. doi: 10.19304/J.ISSN1000-7180.2023.0034
Citation: SU H,YU S S,YANG S. The color image steganography in frequency domain based on separation training and image denoising[J]. Microelectronics & Computer,2024,41(2):28-36. doi: 10.19304/J.ISSN1000-7180.2023.0034

基于分离训练与图像去噪的频率域彩色图像隐写方法

The color image steganography in frequency domain based on separation training and image denoising

  • 摘要: 彩色图像隐写方法具有秘密传输、不易察觉的特性。其中,基于频率域的彩色图像隐写方法不论在传统图像隐写方法还是深度学习图像隐写方法中都取得了更好的隐写性能。然而,当前大多基于自编码器结构的彩色图像隐写模型在提升重构秘密图像能力方面均存在局限性。针对这一问题,本文基于频率域彩色图像隐写方法的现有优势,提出了一种基于分离训练与图像去噪的频率域彩色图像隐写方法,并构建了相应的隐写模型。面对自编码器的编码网络与解码网络在训练过程中的性能权衡问题,本文的隐写方法采用分离训练对默认的神经网络训练方式进行优化。除此之外,为了进一步提升重构秘密图像的质量,模型还添加了去噪卷积神经网络(Denoising Convolutional Neural Network, DnCNN)结构的图像去噪模块。经实验验证,本文模型生成的彩色载密图像与重构秘密图像的峰值信噪比(Peak Signal to Noise Ratio, PSNR)高达82.31 dB和39.27 dB,结构相似度(Structural Similarity Index Measure, SSIM)均达到0.99。与同类型的深度学习彩色图像隐写模型相比,提出的隐写模型不仅具有更强的不可察觉性,而且具有更好的重构秘密图像的能力。

     

    Abstract: Color image steganography attracts the attention of scholars because of its secretive and imperceptibility. The color image steganography based on frequency domain has achieved better performance in both traditional steganography and deep learning steganography. However, most current steganographic models based on auto-encoder have limitations in improving the ability of reconstructing secret images. Based on this problem and the existing advantages of steganography in the frequency domain, a color image steganographic method based on separation training and image denoising is proposed. In the face of the performance trade-off between the encoder and the decoder, the proposed method uses the separation training to optimize the model training. In addition, the proposed model adds an image-denoising module which is a Denoising Convolutional Neural Network(DnCNN). Experimental results show that the Peak Signal to Noise Ratio(PSNR) of the stego image and the reconstructed secret image reached 82.31 dB and 39.27 dB respectively, and the Structural Similarity Index Measure(SSIM) reached 0.99. Compared with other models, the proposed model not only has stronger imperceptibility but also has better ability to reconstruct secret images.

     

/

返回文章
返回