• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向自主可控的微系统关键技术研究及展望

唐磊 匡乃亮 郭雁蓉 王艳玲 李逵 李宝霞 潘鹏辉

唐磊,匡乃亮,郭雁蓉,等.面向自主可控的微系统关键技术研究及展望[J]. 微电子学与计算机,2023,40(1):1-10 doi: 10.19304/J.ISSN1000-7180.2022.0832
引用本文: 唐磊,匡乃亮,郭雁蓉,等.面向自主可控的微系统关键技术研究及展望[J]. 微电子学与计算机,2023,40(1):1-10 doi: 10.19304/J.ISSN1000-7180.2022.0832
TANG L,KUANG N L,GUO Y R,et al. The Research and Prospect on Independent and Controllable Key Technologies of Microsystems[J]. Microelectronics & Computer,2023,40(1):1-10 doi: 10.19304/J.ISSN1000-7180.2022.0832
Citation: TANG L,KUANG N L,GUO Y R,et al. The Research and Prospect on Independent and Controllable Key Technologies of Microsystems[J]. Microelectronics & Computer,2023,40(1):1-10 doi: 10.19304/J.ISSN1000-7180.2022.0832

面向自主可控的微系统关键技术研究及展望

doi: 10.19304/J.ISSN1000-7180.2022.0832
详细信息
    作者简介:

    唐磊:男,(1973-),硕士,研究员,博士生导师. 研究方向为微系统集成技术

    郭雁蓉:女,(1984-),高级工程师. 研究方向为微系统产品设计

    王艳玲:女,(1984-),硕士,高级工程师. 研究方向为微系统电特性建模与仿真技术

    李逵:男,(1987-),硕士,高级工程师. 研究方向为微系统散热和结构可靠性技术

    李宝霞:女,(1977-),博士,研究员. 研究方向为微系统TSV封装技术

    潘鹏辉:男,(1984-),硕士,高级工程师. 研究方向为微系统测试技术

    通讯作者:

    男,(1982-),硕士,研究员. 研究方向为微系统集成技术. E-mail:crabkuang@163.com

  • 中图分类号: TN40

The Research and Prospect on Independent and Controllable Key Technologies of Microsystems

  • 摘要:

    微系统技术是后摩尔时代延续摩尔定律重要的解决途径,能够满足电子装备对小型化、多功能电子系统的迫切需求. 由于国内外基础工业条件及布局存在较大差异,无法将国外微系统技术路线全盘复制,应立足国内集成电路产业及封测产业的现状,走适合中国国情的自主可控技术路线. 本文从微系统产品设计、制造及测试的研制流程出发,重点对微系统设计仿真、先进封装和集成测试等方面的关键技术展开研究,形成了自主创新的关键技术解决思路,并提出了微系统的未来发展预判.

     

  • 图 1  微系统CPS协同设计仿真方法

    Figure 1.  CPS Co-design simulation method for microsystems

    图 2  微焊点层等效计算基本单元和微系统热等效建模网格示意

    Figure 2.  The unit cell for equivalent calculation of the microbump layer and the thermal equivalent modeling grid diagram for the microsystem

    图 3  TSV硅转接板层等效计算体积单元和微系统力学等效建模网格示意

    Figure 3.  The volume unit cell for equivalent calculation of the TSV silicon substrate and the mechanical equivalent modeling grid diagram for the microsystem

    图 4  TSV硅转接板PDN等效电路模型示例

    Figure 4.  Example of PDN equivalent circuit model for the TSV silicon substrate

    图 5  晶圆重构基本工序

    Figure 5.  The basic processes of the wafer reconstruction

    图 6  基于晶圆重构的多层TSV堆叠示意

    Figure 6.  The multi-layers TSV stack based on the wafer reconstruction

    图 7  硅转接板双面飞针互连测试

    Figure 7.  Silicon adapter board double-sided interconnection test

    图 8  硅基组件ICT飞针互连测试过程

    Figure 8.  ICT Flying Pin Interconnection Test Process of Silicon Based Modules

    图 9  KGDs测试插座示意图

    Figure 9.  Schematic Diagram of KGDs Test Socket

  • [1] 唐磊, 匡乃亮, 郭雁蓉, 等. 信息处理微系统的发展现状与未来展望[J]. 微电子学与计算机,2021,38(10):1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1098.

    TANG L, KUANG N L, GUO Y R, et al. The development status and future prospects of information processing microsystem[J]. Microelectronics & Computer,2021,38(10):1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1098.
    [2] LI T, HOU J, YAN J L, et al. Chiplet heterogeneous integration technology—Status and challenges[J]. Electronics,2020,9(4):670. DOI: 10.3390/electronics9040670.
    [3] SHARMA D D, PASDAST G, QIAN Z G, et al. Universal chiplet interconnect express (UCIe): an open industry standard for innovations with Chiplets at package level[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2022,12(9):1423-1431. DOI: 10.1109/TCPMT.2022.3207195.
    [4] NURVITADHI E, COOK J, MISHRA A, et al. In-package domain-specific ASICs for Intel® Stratix® 10 FPGAs: a case study of accelerating deep learning using TensorTile ASIC[C]//2018 28th International Conference on Field Programmable Logic and Applications (FPL). Dublin, Ireland: IEEE, 2018: 106-1064.
    [5] KIM J, KIM Y. HBM: Memory solution for bandwidth-hungry processors[C]//2014 IEEE Hot Chips 26 Symposium (HCS). Cupertino: IEEE, 2014: 1-24.
    [6] 汤姝莉, 赵国良, 薛亚慧, 等. 基于TSV倒装焊与芯片叠层的高密度组装及封装技术[J]. 电子与封装,2022,22(8):080201. DOI: 10.16257/j.cnki.1681-1070.2022.0803.

    TANG S L, ZHAO G L, XUE Y H, et al. High density assembly and packaging technology based on flip-chip on TSV and chip stacking[J]. Electronics & Packaging,2022,22(8):080201. DOI: 10.16257/j.cnki.1681-1070.2022.0803.
    [7] BHATTACHARYA R, LOHANI J, GUPTA A, et al. Enabling chip, package and PCB system co design and analysis in a heterogeneous integration environment-An EDA approach[C]//2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON). Cocoa Beach: IEEE, 2019: 1-4.
    [8] 齐晓锐. 基于CPS的复杂产品协同设计优化平台[C]//第三十三届中国仿真大会论文集. 北京: 中国仿真学会, 2021: 165-170.

    QI X R. Collaborative optimization platform of complex products based on CPS[C]//Proceedings of the 33rd China Simulation Conference. Beijing: China Simulation Society, 2021: 165-170.
    [9] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2022,12(2):228-252. DOI: 10.1109/TCPMT.2022.3144461.
    [10] CHEN W T, LIN C C, TSAI C H, et al. Design and analysis of logic-HBM2E power delivery system on CoWoS® platform with deep trench capacitor[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). Orlando: IEEE, 2020: 380-385.
    [11] MAHAJAN R, SANKMAN R, PATEL N, et al. Embedded multi-die interconnect bridge (EMIB)--a high density, high bandwidth packaging interconnect[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas: IEEE, 2016: 557-565.
    [12] MAHAJAN R, SANE S. Advanced packaging technologies for heterogeneous integration[C]//Proc. IEEE Hot Chip Conf. 2021: 1-44.
    [13] 王艳玲, 杨宇军, 袁金焕, 等. 基于CPS协同的微系统电源信号完整性设计[J]. 遥测遥控,2021,42(5):77-84. DOI: 10.12347/j.ycyk.20210527001.

    WANG Y L, YANG Y J, YUAN J H, et al. Power and signal integrity design of microsystem based on CPS co-design[J]. Journal of Telemetry, Tracking and Command,2021,42(5):77-84. DOI: 10.12347/j.ycyk.20210527001.
    [14] KUI L, WANG X, ZHANG Z X, et al. Equivalent modeling of microbump layer in microsystem for thermal analysis based on differential idea[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2022,12(9):1502-1515. DOI: 10.1109/TCPMT.2022.3192830.
    [15] 李逵, 王鑫, 李若恬, 等. 微系统结构均匀化模型参数的确定方法研究[J]. 微电子学,2022,52(3):431-436. DOI: 10.13911/j.cnki.1004-3365.210414.

    LI K, WANG X, LI R T, et al. Study on homogenization model parameters determination method of microsystem structure[J]. Microelectronics,2022,52(3):431-436. DOI: 10.13911/j.cnki.1004-3365.210414.
    [16] LI W, WEI T, WANG J, et al. Modeling method for power distribution network in the micro-system packaging[C]//2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Beijing: IEEE, 2022.
  • 加载中
图(9)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  53
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 修回日期:  2022-12-19
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回