The Research and Prospect on Independent and Controllable Key Technologies of Microsystems
-
摘要:
微系统技术是后摩尔时代延续摩尔定律重要的解决途径,能够满足电子装备对小型化、多功能电子系统的迫切需求. 由于国内外基础工业条件及布局存在较大差异,无法将国外微系统技术路线全盘复制,应立足国内集成电路产业及封测产业的现状,走适合中国国情的自主可控技术路线. 本文从微系统产品设计、制造及测试的研制流程出发,重点对微系统设计仿真、先进封装和集成测试等方面的关键技术展开研究,形成了自主创新的关键技术解决思路,并提出了微系统的未来发展预判.
Abstract:Microsystem technology is an important way to continue Moore's Law in the post Moore era, which can meet the urgent demand for miniaturized and multi-functional electronic systems in the electronic equipment. Due to the great differences on the conditions and layout between the domestic and overseas fundamental industries, it is impossible to completely duplicate the overseas roadmap on microsystem technology. Based on the current situation of the domestic integrated circuit industry and the packaging and testing industry, we should adopt an independent and controllable technology roadmap that is suitable for China's national situation. This paper is based on the preparation process of the microsystem including the product design, manufacturing and testing. It analyzes the key technologies on system design, simulation, advanced packaging and integrated testing of microsystems. Based on the analyses, the key technologies and solutions for independent innovation are deduced. Additionally, the future development prediction of microsystems is proposed.
-
-
[1] 唐磊, 匡乃亮, 郭雁蓉, 等. 信息处理微系统的发展现状与未来展望[J]. 微电子学与计算机,2021,38(10):1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1098.TANG L, KUANG N L, GUO Y R, et al. The development status and future prospects of information processing microsystem[J]. Microelectronics & Computer,2021,38(10):1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1098. [2] LI T, HOU J, YAN J L, et al. Chiplet heterogeneous integration technology—Status and challenges[J]. Electronics,2020,9(4):670. DOI: 10.3390/electronics9040670. [3] SHARMA D D, PASDAST G, QIAN Z G, et al. Universal chiplet interconnect express (UCIe): an open industry standard for innovations with Chiplets at package level[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2022,12(9):1423-1431. DOI: 10.1109/TCPMT.2022.3207195. [4] NURVITADHI E, COOK J, MISHRA A, et al. In-package domain-specific ASICs for Intel® Stratix® 10 FPGAs: a case study of accelerating deep learning using TensorTile ASIC[C]//2018 28th International Conference on Field Programmable Logic and Applications (FPL). Dublin, Ireland: IEEE, 2018: 106-1064. [5] KIM J, KIM Y. HBM: Memory solution for bandwidth-hungry processors[C]//2014 IEEE Hot Chips 26 Symposium (HCS). Cupertino: IEEE, 2014: 1-24. [6] 汤姝莉, 赵国良, 薛亚慧, 等. 基于TSV倒装焊与芯片叠层的高密度组装及封装技术[J]. 电子与封装,2022,22(8):080201. DOI: 10.16257/j.cnki.1681-1070.2022.0803.TANG S L, ZHAO G L, XUE Y H, et al. High density assembly and packaging technology based on flip-chip on TSV and chip stacking[J]. Electronics & Packaging,2022,22(8):080201. DOI: 10.16257/j.cnki.1681-1070.2022.0803. [7] BHATTACHARYA R, LOHANI J, GUPTA A, et al. Enabling chip, package and PCB system co design and analysis in a heterogeneous integration environment-An EDA approach[C]//2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON). Cocoa Beach: IEEE, 2019: 1-4. [8] 齐晓锐. 基于CPS的复杂产品协同设计优化平台[C]//第三十三届中国仿真大会论文集. 北京: 中国仿真学会, 2021: 165-170.QI X R. Collaborative optimization platform of complex products based on CPS[C]//Proceedings of the 33rd China Simulation Conference. Beijing: China Simulation Society, 2021: 165-170. [9] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2022,12(2):228-252. DOI: 10.1109/TCPMT.2022.3144461. [10] CHEN W T, LIN C C, TSAI C H, et al. Design and analysis of logic-HBM2E power delivery system on CoWoS® platform with deep trench capacitor[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). Orlando: IEEE, 2020: 380-385. [11] MAHAJAN R, SANKMAN R, PATEL N, et al. Embedded multi-die interconnect bridge (EMIB)--a high density, high bandwidth packaging interconnect[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas: IEEE, 2016: 557-565. [12] MAHAJAN R, SANE S. Advanced packaging technologies for heterogeneous integration[C]//Proc. IEEE Hot Chip Conf. 2021: 1-44. [13] 王艳玲, 杨宇军, 袁金焕, 等. 基于CPS协同的微系统电源信号完整性设计[J]. 遥测遥控,2021,42(5):77-84. DOI: 10.12347/j.ycyk.20210527001.WANG Y L, YANG Y J, YUAN J H, et al. Power and signal integrity design of microsystem based on CPS co-design[J]. Journal of Telemetry, Tracking and Command,2021,42(5):77-84. DOI: 10.12347/j.ycyk.20210527001. [14] KUI L, WANG X, ZHANG Z X, et al. Equivalent modeling of microbump layer in microsystem for thermal analysis based on differential idea[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2022,12(9):1502-1515. DOI: 10.1109/TCPMT.2022.3192830. [15] 李逵, 王鑫, 李若恬, 等. 微系统结构均匀化模型参数的确定方法研究[J]. 微电子学,2022,52(3):431-436. DOI: 10.13911/j.cnki.1004-3365.210414.LI K, WANG X, LI R T, et al. Study on homogenization model parameters determination method of microsystem structure[J]. Microelectronics,2022,52(3):431-436. DOI: 10.13911/j.cnki.1004-3365.210414. [16] LI W, WEI T, WANG J, et al. Modeling method for power distribution network in the micro-system packaging[C]//2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Beijing: IEEE, 2022. -