• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高密度集成微系统的微通道散热技术研究进展

杜鹏 周庆忠 郑涵文 张遇好 李建柱 李宇杰

杜鹏,周庆忠,郑涵文,等.用于高密度集成微系统的微通道散热技术研究进展[J]. 微电子学与计算机,2023,40(1):87-96 doi: 10.19304/J.ISSN1000-7180.2022.0810
引用本文: 杜鹏,周庆忠,郑涵文,等.用于高密度集成微系统的微通道散热技术研究进展[J]. 微电子学与计算机,2023,40(1):87-96 doi: 10.19304/J.ISSN1000-7180.2022.0810
DU P,ZHOU Q Z,ZHENG H W,et al. Research progress of microchannel cooling technology for high-density microsystems[J]. Microelectronics & Computer,2023,40(1):87-96 doi: 10.19304/J.ISSN1000-7180.2022.0810
Citation: DU P,ZHOU Q Z,ZHENG H W,et al. Research progress of microchannel cooling technology for high-density microsystems[J]. Microelectronics & Computer,2023,40(1):87-96 doi: 10.19304/J.ISSN1000-7180.2022.0810

用于高密度集成微系统的微通道散热技术研究进展

doi: 10.19304/J.ISSN1000-7180.2022.0810
基金项目: 山东省自然科学基金面上项目(ZR2021ME089)
详细信息
    作者简介:

    杜鹏:男,(1999-),硕士研究生. 研究方向为大功率器件/系统高效散热设计

    周庆忠:男,(1999-),硕士研究生. 研究方向为多物理场耦合模拟

    郑涵文:男,(2000-),硕士研究生. 研究方向为先进封装材料

    通讯作者:

    女,(1975-),博士,教授,研究方向为先进封装材料与封装技术。E-mail:liyujie@hit.edu.cn

  • 中图分类号: TK124

Research progress of microchannel cooling technology for high-density microsystems

  • 摘要:

    随着电子产品向小型化、多功能、大功率发展以及集成度的不断提高,必然会带来热量更为集中、热流密度不断升高的问题. 为保证可靠工作,实现电子产品,尤其是高密度集成微系统的高效散热就显得尤为重要. 与传统的散热技术相比,微通道散热器可直接集成在器件/系统基板内,制造工艺兼容性好,散热路径短、散热能力强,特别适用于高密度集成微系统的热管控. 本文综述了微通道散热器传热传质特性的表征、影响因素及强化方法。对微通道结构进行优化设计、采用以纳米流体为代表的高性能冷却介质是提高微通道散热器综合散热性能的主要手段. 目前在复杂三维微通道结构的制造及高稳定纳米流体性能调控等方面还存在诸多问题. 深入研究相关制造工艺技术和传热传质机理,将有利于进一步拓展微通道散热技术在高密度集成微系统热管控领域的实际应用.

     

  • 图 1  FCOL封装过程[6]

    Figure 1.  FCOL process[6]

    图 2  强迫液冷散热典型结构

    Figure 2.  Typical design of forced liquid cooling

    图 3  重力热管典型结构[8]

    Figure 3.  Typical structure of gravity heat pipes[8]

    图 4  不同散热方式对应的热流密度范围[8]

    Figure 4.  The range of heat flux corresponding to different heat dissipation methods[8]

    图 5  微通道热沉基本结构

    Figure 5.  The basic structure of microchannel heat sinks

    图 6  各类散热技术对应的传热系数对比[10]

    Figure 6.  Heat transfer coefficients achieved by various heat dissipation technologies[10]

    图 7  不同形状的微通道结构

    Figure 7.  Microchannels with different shapes

    图 8  具有仿生拓扑结构的微通道[18]

    Figure 8.  Microchannels with biomimetic topology

    图 9  纳米流体两步法制备过程及分散稳定性控制方法

    Figure 9.  The two-step preparation process and dispersion stabilization method of nanofluids

    表  1  不同散热方式对比

    Table  1.   Different heat dissipation methods

    散热方式优点缺点
    自然对流散热结构简单
    运行可靠
    散热能力弱
    强迫液冷散热散热能力较强系统结构复杂
    体积大
    无法满足高密度集成
    微系统需求
    相变散热结构简单、
    无外部功耗
    散热能力有限
    无法满足高密度
    集成微系统需求
    下载: 导出CSV

    表  2  不同拓扑结构微通道的热仿真结果[18]

    Table  2.   Thermal simulation results of microchannels with various topologies

    拓扑结构芯片最高温度/℃压降/kPa
    5W10W20W40W
    河流网络29.438.857.795.4148.1
    矩形平直28.737.755.390.797.1
    昆虫翅脉28.336.753.486.7110.5
    叶脉28.136.452.785.596.2
    仿蜂窝27.936.252.484.990.8
    蜘蛛网27.635.751.482.893.1
    下载: 导出CSV

    表  3  常压30℃时传统冷却介质的物理参数对比

    Table  3.   Physical parameters of conventional coolants at atmospheric pressure and 30℃

    物化性能乙二醇导热油
    (以煤油为例)
    液态镓
    导热系数W/(m·K)0.620.250.1540.60
    比热容kJ/(kg·℃)4.22.72.10.4
    密度/(g/cm3)1.001.100.805.90
    粘度/mPa·s1.011.782.011.75
    沸点/ ℃100197822403
    熔点/ ℃0-13-8630
    下载: 导出CSV
  • [1] 田浩, 曹智睿. 一种适用于高热流密度芯片的微槽道冲击射流冷却系统[J]. 暖通空调,2017,47(10):137-141.

    TIAN H, CAO Z R. Micro-channel jet cooling system for high heat flux chips[J]. Heating Ventilating & Air Conditioning,2017,47(10):137-141.
    [2] LEE J, MUDAWAR I. Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks–Part 1: Experimental methods and flow visualization results[J]. International Journal of Heat and Mass Transfer,2008,51(17-18):4315-4326. DOI: 10.1016/j.ijheatmasstransfer.2008.02.012.
    [3] 王沫然, 李志信. 微尺度热科学及其在MEMS中的应用[J]. 仪表技术与传感器,2002(7):1-4. DOI: 10.3969/j.issn.1002-1841.2002.07.001.

    WANG M R, LI Z X. Microscale thermal science and its applications in MEMS[J]. Instrument Technique and Sensor,2002(7):1-4. DOI: 10.3969/j.issn.1002-1841.2002.07.001.
    [4] ANANDAN S S, RAMALINGAM V. Thermal management of electronics: A review of literature[J]. Thermal Science,2008,12(2):5-26. DOI: 10.2298/TSCI0802005A.
    [5] 张大霖, 马涛, 荣志强. 5G车载网联控制器热失效分析与改进[J]. 上海汽车,2022(2):46-49. DOI: 10.3969/j.issn.1007-4554.2022.02.08.

    ZHANG D L, MA T, RONG Z Q. Analysis and improvement of 5G vehicle-mounted controller thermal failure[J]. Shanghai Auto,2022(2):46-49. DOI: 10.3969/j.issn.1007-4554.2022.02.08.
    [6] 陶鑫, 王珺. FCOL封装芯片热应力及影响因素分析[J]. 半导体技术,2019,44(10):803-807. DOI: 10.13290/j.cnki.bdtjs.2019.10.010.

    TAO X, WANG J. Analysis of the thermal stress and influencing factors of the chip in FCOL packaging[J]. Semiconductor Technology,2019,44(10):803-807. DOI: 10.13290/j.cnki.bdtjs.2019.10.010.
    [7] 夏侯国伟, 王当, 刘业鹏. IGBT功率模块冷却技术的综述[J]. 昆明理工大学学报(自然科学版),2017,42(1):63-67. DOI: 10.16112/j.cnki.53-1223/n.2017.01.011.

    XIAHOU G W, WANG D, LIU Y P. Summary of IGBT power module cooling technology[J]. Journal of Kunming University of Science and Technology (Natural Science Edition),2017,42(1):63-67. DOI: 10.16112/j.cnki.53-1223/n.2017.01.011.
    [8] 李广义, 张俊洪, 高键鑫. 大功率电力电子器件散热研究综述[J]. 兵器装备工程学报,2020,41(11):8-14. DOI: 10.11809/bqzbgcxb2020.11.002.

    LI G Y, ZHANG J H, GAO J X. Review on heat dissipation of high power electronic devices[J]. Journal of Ordnance Equipment Engineering,2020,41(11):8-14. DOI: 10.11809/bqzbgcxb2020.11.002.
    [9] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters,1981,2(5):126-129. DOI: 10.1109/EDL.1981.25367.
    [10] 刘东. 高热流密度微结构散热器换热特性的研究[D]. 合肥: 中国科学技术大学, 2011.

    LIU D. Study on the performance of micro-structure heat radiator for high heat flux equipment[D]. Hefei: University of Science and Technology of China, 2011.
    [11] SHAH R K, LONDON A L. Advances in heat transfer laminar flow forced convection in ducts[M]. New York: Academic Press, 1978.
    [12] CHOI S B, BARRON R F, WARRINGTON R O. Fluid flow and heat transfer in microtubes[C]//Micromechanical Sensors, Actuators and Systems. New York: ASME, 1991.
    [13] YU D, WARRINGTON R, BARRON R, et al. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes[C]//Proceedings of ASME/JSME Thermal Engineering Joint Conference. 1995.
    [14] ADAMS T M, DOWLING M F, ABDEL-KHALIK S I, et al. Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels[J]. International Journal of Heat and Mass Transfer,1999,42(23):4411-4415. DOI: 10.1016/S0017-9310(99)00102-7.
    [15] GONG L J, KOTA K, TAO W Q, et al. Thermal performance of microchannels with wavy walls for electronics cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2011,1(7):1029-1035. DOI: 10.1109/TCPMT.2011.2125963.
    [16] HSU C H, DANG H S, NGUYEN T A T. The application of Fibonacci sequence and Taguchi method for investigating the design parameters on spiral micro-channel[C]//2016 International Conference on Applied System Innovation. Okinawa: IEEE, 2016: 1-4.
    [17] NARREIN K, SIVASANKARAN S, GANESAN P. Two-phase analysis of a helical microchannel heat sink using nanofluids[J]. Numerical Heat Transfer, Part A:Applications,2015,68(11):1266-1279. DOI: 10.1080/10407782.2015.1032017.
    [18] 吴龙文, 卢婷, 陈加进, 等. 芯片散热微通道仿生拓扑结构研究[J]. 电子学报,2018,46(5):1153-1159.

    Longwen W, Tin L, Jiajin C, et al. A Study of Bionic Micro-channel Topology for Chip Cooling[J]. Acta Electronica Sinica,2018,46(5):1153-1159.
    [19] ZHIMIN W, FAH C K. The optimum thermal design of microchannel heat sinks[C]//Proceedings of the 1997 1st Electronic Packaging Technology Conference. Singapore: IEEE, 1997: 123-129.
    [20] 肖润锋, 侯予, 吕坤鹏, 等. 大深宽比微通道热沉流动换热特性数值模拟及优化[J]. 低温工程,2018(6):1-7. DOI: 10.3969/j.issn.1000-6516.2018.06.001.

    XIAO R F, HOU Y, LV K P, et al. Numerical simulation and optimization of flow and heat transfer characteristics of large-aspect ratio microchannel heat sink[J]. Cryogenics,2018(6):1-7. DOI: 10.3969/j.issn.1000-6516.2018.06.001.
    [21] QU W L, MALA G M, LI D Q. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat and Mass Transfer,2000,43(3):353-364. DOI: 10.1016/S0017-9310(99)00148-9.
    [22] GUNNASEGARAN P, MOHAMMED H A, SHUAIB N H, et al. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes[J]. International Communications in Heat and Mass Transfer,2010,37(8):1078-1086. DOI: 10.1016/j.icheatmasstransfer.2010.06.014.
    [23] WANG H T, CHEN Z H, GAO J G. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering,2016,107:870-879. DOI: 10.1016/j.applthermaleng.2016.07.039.
    [24] VAFAI K, ZHU L. Analysis of two-layered micro-channel heat sink concept in electronic cooling[J]. International Journal of Heat and Mass Transfer,1999,42(12):2287-2297. DOI: 10.1016/S0017-9310(98)00017-9.
    [25] XIE G N, CHEN Z Y, SUNDEN B, et al. Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks[J]. Numerical Heat Transfer, Part A:Applications,2013,63(3):201-225. DOI: 10.1080/10407782.2013.730445.
    [26] 曹子勇. 双层交错三角形凹穴微通道热沉流动与传热特性研究[D]. 常州: 常州大学, 2022.

    CAO Z Y. Research on flow and heat transfer characteristics of microchannel heat sink with double-layered staggered triangular cavities[D]. Changzhou: Changzhou University, 2022.
    [27] SINGH B P, GARG H, LALL A K. Optimization of microchannel heat sink using genetic algorithm and Taguchi method[J]. AIP Conference Proceedings, 2016,1724(1):020014. DOI: 10.1063/1.4945134.
    [28] SHI X J, LI S, MU Y J, et al. Geometry parameters optimization for a microchannel heat sink with secondary flow channel[J]. International Communications in Heat and Mass Transfer,2019,104:89-100. DOI: 10.1016/j.icheatmasstransfer.2019.03.009.
    [29] WANG X D, AN B, XU J L. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions[J]. Energy Conversion and Management,2013,65:528-538. DOI: 10.1016/j.enconman.2012.08.018.
    [30] HUNG T C, YAN W M, WANG X D, et al. Optimal design of geometric parameters of double-layered microchannel heat sinks[J]. International Journal of Heat and Mass Transfer,2012,55(11-12):3262-3272. DOI: 10.1016/j.ijheatmasstransfer.2012.02.059.
    [31] PARLAK Z. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries[J]. Heat and Mass Transfer,2018,54(11):3317-3328. DOI: 10.1007/s00231-018-2375-6.
    [32] DENG D X, WAN W, TANG Y, et al. Experimental investigations on flow boiling performance of reentrant and rectangular microchannels–a comparative study[J]. International Journal of Heat and Mass Transfer,2015,82:435-446. DOI: 10.1016/j.ijheatmasstransfer.2014.11.074.
    [33] DENG D X, XIE Y L, HUANG Q S, et al. Flow boiling performance of Ω-shaped reentrant copper microchannels with different channel sizes[J]. Experimental Thermal and Fluid Science,2015,69:8-18. DOI: 10.1016/j.expthermflusci.2015.07.016.
    [34] CHEN Y P, CHENG P. An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets[J]. International Communications in Heat and Mass Transfer,2005,32(7):931-938. DOI: 10.1016/j.icheatmasstransfer.2005.02.001.
    [35] CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. Argonne: Argonne National Lab. (ANL), 1995.
    [36] WU D X, ZHU H T, WANG L Q, et al. Critical issues in nanofluids preparation, characterization and thermal conductivity[J]. Current Nanoscience,2009,5(1):103-112. DOI: 10.2174/157341309787314548.
    [37] SIDIK N A C, MOHAMMED H A, ALAWI O A, et al. A review on preparation methods and challenges of nanofluids[J]. International Communications in Heat and Mass Transfer,2014,54:115-125. DOI: 10.1016/j.icheatmasstransfer.2014.03.002.
    [38] KAMATCHI R, VENKATACHALAPATHY S. Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review[J]. International Journal of Thermal Sciences,2015,87:228-240. DOI: 10.1016/j.ijthermalsci.2014.09.001.
    [39] MEHRALI M, SADEGHINEZHAD E, LATIBARI S T, et al. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids[J]. Journal of Materials Science,2014,49(20):7156-7171. DOI: 10.1007/s10853-014-8424-8.
    [40] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature,2020,585(7824):211-216. DOI: 10.1038/s41586-020-2666-1.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  60
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-03
  • 修回日期:  2022-12-16
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回