• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基三维集成射频无源器件及电路研究进展

朱樟明 尹湘坤 刘晓贤 杨银堂

朱樟明,尹湘坤,刘晓贤,等.硅基三维集成射频无源器件及电路研究进展[J]. 微电子学与计算机,2023,40(1):11-17 doi: 10.19304/J.ISSN1000-7180.2022.0687
引用本文: 朱樟明,尹湘坤,刘晓贤,等.硅基三维集成射频无源器件及电路研究进展[J]. 微电子学与计算机,2023,40(1):11-17 doi: 10.19304/J.ISSN1000-7180.2022.0687
ZHU Z M,YIN X K,LIU X X,et al. Research progress of silicon-based 3D integrated RF passive devices and circuits[J]. Microelectronics & Computer,2023,40(1):11-17 doi: 10.19304/J.ISSN1000-7180.2022.0687
Citation: ZHU Z M,YIN X K,LIU X X,et al. Research progress of silicon-based 3D integrated RF passive devices and circuits[J]. Microelectronics & Computer,2023,40(1):11-17 doi: 10.19304/J.ISSN1000-7180.2022.0687

硅基三维集成射频无源器件及电路研究进展

doi: 10.19304/J.ISSN1000-7180.2022.0687
基金项目: 国家重点研发计划资助项目(2022YFB4401303)
详细信息
    作者简介:

    朱樟明:男,(1978- ),教授,博士生导师. 研究方向为 模拟前端集成电路与集成系统

    刘晓贤:女,(1988- ),副教授,硕士生导师. 研究方向为射频集成电路与系统

    杨银堂:男,(1962- ),教授,博士生导师. 研究方向为三维集成微系统

    通讯作者:

    男,(1983- ),副研究员,硕士生导师. 研究方向为射频集成电路及三维微系统. E-mail:yinxkcn@163.com

  • 中图分类号: TN305;TN405

Research progress of silicon-based 3D integrated RF passive devices and circuits

  • 摘要:

    射频电路在移动通信终端和雷达前端等电子系统中占据了较大比例的面积和体积,且现有射频集成方式无法实现无源电路的微型化、多功能化、一体化系统集成,成为系统小型化集成、性能提升的瓶颈,更制约了各种电子设备和通信系统的发展. 基于硅通孔的三维集成技术可以实现硅基电路的多层堆叠,在实现高密度、高性能、微型化的射频系统方面具有巨大发展潜力和广阔应用前景. 本文介绍了基于硅基三维集成技术实现的射频无源器件及电路的研究进展,主要包括无源电容、电感、天线、滤波器、功分器、耦合器、巴伦. 最后,对各类射频无源器件及功能电路模块的发展现状和趋势进行了总结和展望.

     

  • 图 1  硅基三维集成的射频系统架构

    Figure 1.  Architecture of silicon-based 3D integrated RF system

    图 2  基于TSV的三维集成电容器的制作工艺

    Figure 2.  Manufacturing process of TSV-based 3D capacitor

    图 3  基于TSV的三维集成螺旋电感器

    Figure 3.  Perspective view of TSV-based solenoid inductor

    图 4  使用TSV馈电的三维集成天线

    Figure 4.  3D integrated antenna fed by TSV

    图 5  基于TSV的三维集成滤波器

    Figure 5.  Architecture of TSV-based 3D integrated filter

    图 6  基于TSV的三维集成双频功率分配器

    Figure 6.  Top view of TSV-based 3D integrated dual frequency power divider

    图 7  基于TSV的三维集成巴伦

    Figure 7.  Architecture of TSV-based 3D integrated Balun

    图 8  基于TSV的集总参数分支线耦合器

    Figure 8.  Architecture of TSV-based lumped parameter branch line coupler

  • [1] 刘松, 单光宝. 一种改进的穿硅电容三维互连技术[J]. 微纳电子技术,2017,54(8):558-564. DOI: 10.13250/j.cnki.wndz.2017.08.009.

    LIU S, SHAN G B. An Improved 3D interconnection technology of through-silicon capacitors[J]. Micronanoelectronic Technology,2017,54(8):558-564. DOI: 10.13250/j.cnki.wndz.2017.08.009.
    [2] LIN Y, TAN C S. Modeling, fabrication, and characterization of 3-D capacitor embedded in through-Silicon Via[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2018,8(9):1524-1532. DOI: 10.1109/TCPMT.2018.2864541.
    [3] LI J W, MA S L, LIU H, et al. Design, fabrication and characterization of TSV interposer integrated 3D capacitor for SIP applications[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC). San Diego, CA, USA: IEEE, 2018: 1974-1980.
    [4] CHUI K J, WANG I T, CHE F X, et al. A 2-tier embedded 3D capacitor with high aspect ratio TSV[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). Orlando, FL, USA: IEEE, 2020: 611-616.
    [5] LIN Y, APRIYANA A A A, LI H Y, et al. Three-dimensional capacitor embedded in fully Cu-filled through-silicon via and its thermo-mechanical reliability for power delivery applications[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). Orlando, FL, USA: IEEE, 2020: 393-398.
    [6] EBEFORS T, FREDLUND J, PERTTU D, et al. The development and evaluation of RF TSV for 3D IPD applications[C]//2013 IEEE International 3D Systems Integration Conference (3DIC). San Francisco, CA, USA: IEEE, 2013: 1-8.
    [7] KRISHNAMURTHY H K, WENG S, MATTHEW G E, et al. A digitally controlled fully integrated voltage regulator with 3D-TSV based on-die solenoid inductor with backside planar magnetic core in 14 nm tri-gate CMOS[C]//2017 Symposium on VLSI Technology. Kyoto, Japan: IEEE, 2017: C148-C149.
    [8] YIN X K, WANG F J, ZHU Z M, et al. Modeling and measurement of 3D solenoid inductor based on through-silicon vias[J]. Chinese Journal of Electronics.
    [9] GHANNAM A, VAN HAARE N, BRAVIN J, et al. Ultra-thin QFN-like 3D package with 3D integrated passive devices[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). Las Vegas, NV, USA: IEEE, 1789-1795.
    [10] JIN C, SEKHAR V N, BAO X Y, et al. Antenna-in-package design based on wafer-level packaging with through silicon via technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2013,3(9):1498-1505. DOI: 10.1109/TCPMT.2013.2261855.
    [11] LEI C Y, JIAN Z, FANG H, et al. The fabrication of three-layer silicon stacked antenna[C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Xiamen, China: 2021: 1057-1061.
    [12] ZHOU Y. A novel, dual-band, miniaturized antenna with fractal-curve patch and TSV-CPW feeder[C]//2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Guilin, China: IEEE, 2016: 251-253.
    [13] SUN Y H, JIN Y F, CAI H, et al. Design, fabrication and measurement of TSV interposer integrated X-band microstrip filter[C]//2019 20th International Conference on Electronic Packaging Technology (ICEPT). Hong Kong, China: IEEE, 2019: 1-3.
    [14] PRIGENT G, FRANC A L, WIETSTRUCK M, et al. Substrate integrated waveguide bandpass filters implemented on silicon interposer for terahertz applications[C]//2020 IEEE/MTT-S International Microwave Symposium (IMS). Los Angeles, CA, USA: IEEE, 2020: 595-598.
    [15] SHIN K R, KILERT K. Lumped element high precision X-Band bandpass filter with through silicon via (TSV) integrated passive device (IPD) technology[C]//2021 IEEE Radio and Wireless Symposium (RWS). San Diego, CA, USA: IEEE, 2021: 147-150.
    [16] WANG F J, PAVLIDIS V F, YU N M. Miniaturized SIW bandpass filter based on TSV technology for THz applications[J]. IEEE Transactions on Terahertz Science and Technology,2020,10(4):423-426. DOI: 10.1109/TTHZ.2020.2974091.
    [17] WANG F J, YU N M. An ultracompact butterworth low-pass filter based on coaxial through-silicon vias[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2017,25(3):1164-1167. DOI: 10.1109/TVLSI.2016.2620460.
    [18] WANG F J, ZHANG K, YIN X K, et al. A miniaturized wideband interdigital bandpass filter with high out-band suppression based on TSV technology for W-Band application[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2022,30(7):989-992. DOI: 10.1109/TVLSI.2022.3166746.
    [19] YIN X K, ZHU Z M, LIU Y, et al. Ultra-compact TSV-based L-C low-pass filter with stopband up to 40 GHz for microwave application[J]. IEEE Transactions on Microwave Theory and Techniques,2019,67(2):738-745. DOI: 10.1109/TMTT.2018.2882809.
    [20] LIU X X, ZHU Z M, LIU Y, et al. Compact bandpass filter and diplexer with wide-stopband suppression based on balanced substrate-integrated waveguide[J]. IEEE Transactions on Microwave Theory and Techniques,2021,69(1):54-64. DOI: 10.1109/TMTT.2020.3032195.
    [21] WOODS W, DING H Y, WANG G N, et al. Novel on-chip through-silicon-via wilkinson power divider[C]//2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). Las Vegas, NV, USA: IEEE, 2010: 524-529.
    [22] WANG F J, LI R Q, WANG R, et al. High performance compact power divider based on TSV[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT): Dalian, China: IEEE, 2022: 1-3.
    [23] WANG F J, LI R Q, YIN X K, et al. Compact high-performance dual-frequency power divider based on TSV[J]. Microelectronics Journal,2022,129:105580. DOI: 10.1016/j.mejo.2022.105580.
    [24] XIONG W, DONG G, WANG Y, et al. 3-D compact marchand balun design based on through-silicon via technology for monolithic and 3-D Integration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2022,30(8):1107-1118. DOI: 10.1109/TVLSI.2022.3170415.
    [25] HOSSAIN M, JOHANSEN T K, HROBAK M, et al. A compact broadband Marchand Balun for millimeter-wave and sub-THz applications[C]//2020 German Microwave Conference (GeMiC). Cottbus, Germany: IEEE, 2020: 60-63.
    [26] LU Q J, ZHU Z M, SHAN G B. et al. 3-D compact 3-dB branch-line directional couplers based on through-silicon via technology for millimeter-wave applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2019,9(9):1855-1862. DOI: 10.1109/TCPMT.2019.2927553.
    [27] 李逵, 张庆学, 张欲欣, 等. TSV结构SiP模块的等效建模仿真与热阻测试[J]. 半导体技术,2020,45(12):982-987. DOI: 10.13290/j.cnki.bdtjs.2020.12.012.

    LI K, ZHANG Q X, ZHANG Y X, et al. Equivalent modeling simulation and thermal resistance test for TSV structure SiP modules[J]. Semiconductor Technology,2020,45(12):982-987. DOI: 10.13290/j.cnki.bdtjs.2020.12.012.
  • 加载中
图(8)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  40
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2022-11-21
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回