Mode I fracture test of SAC305 solder reinforced by nickel coated multi-walled carbon nanotubes
-
摘要:
发展高可靠的互连封装新型焊料已经成为电子封装领域的前沿研究内容之一. 本文制备了包镍碳纳米管增强SAC305焊料,并开展了不同含量增强SAC305焊料的双悬臂梁试样I型断裂测试,得到了不同添加含量SAC305的载荷-位移曲线. 基于柔度的梁方法理论(CBBM)计算了增强焊料的I型断裂韧度. 研究结果表明,其I型断裂韧度随着包镍碳纳米管质量分数的增加,表现出先升高后降低的趋势. 没有添加包镍碳纳米管的SAC305焊料的I型断裂韧度约为0.53 N/mm,添加0.05wt%包镍碳纳米管的增强焊料的I型断裂韧度最高,约为1.14 N/mm,相较于没有添加包镍碳纳米管的SAC305焊料断裂韧度提高了1.15倍,表现出更好的抵抗裂纹扩展的特性.
Abstract:The requirement on the novel solder joint materials is one of the critical topic studied in electronics packaging. In this paper, nickel-coated carbon nanotubes added SAC305 were prepared by mechanical mixing method. The mode I fracture test was carried out based on the fabricated DCB double cantilever specimen . Based on the test, the load-displacement curve of the specimen was obtained. The beam method theory based on compliance (CBBM) was used to extract the mode I fracture toughness of the fabricated solder. The results show that the mode I fracture toughness of the solder increases first and then decreases with the increase of the additive content. The mode I fracture toughness of SAC305 solder without additive content was about 0.53 N/mm, and the solder with 0.05wt% content of additive shows the highest mode I fracture toughness is about 1.14 N/mm. Compared with SAC305 solder without nickel-coated carbon nanotubes, the mode I fracture toughness of the solder was increased by 1.15 times, which shows better crack propagation resistance.
-
Key words:
- Ni-MWCNTs /
- SAC305 /
- fracture /
- energy release rate /
- DCB specimen
-
表 1 DCB试样的尺寸
Table 1. Dimensions of the DCB specimen
符号 物理参数 尺寸/mm L1 铜片键合长度 75 L2 铜片夹持长度 25 B 铜板宽度 8 h 铜板厚度 1.2 a0 预置裂纹长度 3 t 焊料层厚度 0.1 表 2 不同包镍碳纳米管含量的I型拉伸试验的临界断裂载荷P(N)
Table 2. Critical loads P(N) of the Type I tensile test for different contents of Ni-MWCNTs
包镍碳纳
米管含量试样1 试样2 试样3 试样4 试样5 平均值 0.00wt% 87.11 80.82 87.02 84.43 83.47 84.57 0.01wt% 99.84 90.71 112.98 93.62 97.35 98.90 0.03wt% 94.99 93.53 100.94 109.44 90.43 97.87 0.05wt% 134.54 132.51 147.31 152.69 142.18 141.85 0.10wt% 125.65 112.92 132.22 125.65 103.14 119.92 0.20wt% 117.15 114.72 115.26 117.31 115.30 115.95 0.50wt% 83.03 84.42 102.32 106.34 80.84 91.39 -
[1] CHENG S F, HUANG C M, PECHT M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability,2017,75:77-95. DOI: 10.1016/j.microrel.2017.06.016. [2] ABTEW M, SELVADURAY G. Lead-free solders in microelectronics[J]. Materials Science and Engineering:R:Reports,2000,27(5-6):95-141. DOI: 10.1016/S0927-796X(00)00010-3. [3] ANDERSON I E, FOLEY J C, COOK B A, et al. Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability[J]. Journal of Electronic Materials,2001,30(9):1050-1059. DOI: 10.1007/s11664-001-0129-5. [4] 张帅, 薛松柏, 张亮, 等. 关于 Sn-Ag-Cu系无铅焊点可靠性研究的几个热点问题[J]. 焊接,2012(2):31-35. DOI: 10.3969/j.issn.1001-1382.2012.02.006.ZHANG S, XUE S B, ZHANG L, et al. Hot issues on reliability research of Sn-Ag-Cu soldered joint[J]. Welding & Joining,2012(2):31-35. DOI: 10.3969/j.issn.1001-1382.2012.02.006. [5] 何鹏, 林铁松, 韩春, 等. 电子封装与组装中的软钎焊技术发展及展望[J]. 焊接,2013(1):11-17. DOI: 10.3969/j.issn.1001-1382.2013.01.002.HE P, LIN T S, HAN C, et al. Current development and prospect of soldering technology in electronic packaging assembly[J]. Welding & Joining,2013(1):11-17. DOI: 10.3969/j.issn.1001-1382.2013.01.002. [6] PAL M K, GERGELY G, KONCZ-HORVáTH D, et al. Investigation of microstructure and wetting behavior of Sn–3.0 Ag–0.5 Cu (SAC305) lead-free solder with additions of 1.0 wt% SiC on copper substrate[J]. Intermetallics,2021,128:106991. DOI: 10.1016/j.intermet.2020.106991. [7] HUANG B M, CHEN G, WU F S, et al. Preparation, microstructure and properties of Sn-Ag-Cu solder reinforced with Al2O3 nanoparticles[C]//2014 15th International Conference on Electronic Packaging Technology. Chengdu, China: IEEE, 2014: 243-246. [8] YANG Z B, ZHOU W, WU P. Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn–Ag–Cu solder alloys[J]. Materials Science and Engineering:A,2014,590:295-300. DOI: 10.1016/j.msea.2013.10.008. [9] NAI S M L, WEI J, GUPTA M. Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes[J]. Materials Science and Engineering:A,2006,423(1-2):166-169. DOI: 10.1016/j.msea.2005.10.072. [10] LEE H T, LEE Y H. Adhesive strength and tensile fracture of Ni particle enhanced Sn–Ag composite solder joints[J]. Materials Science and Engineering:A,2006,419(1-2):172-180. DOI: 10.1016/j.msea.2005.12.021. [11] YANG Z B, ZHOU W, WU P. Effects of Ni-coated carbon nanotubes addition on the electromigration of Sn–Ag–Cu solder joints[J]. Journal of Alloys and Compounds,2013,581:202-205. DOI: 10.1016/j.jallcom.2013.07.058. [12] 王惠平. SMT再流焊温度曲线对焊接质量的影响[J]. 青海大学学报(自然科学版),2009,27(2):13-15. DOI: 10.3969/j.issn.1006-8996.2009.02.004.WANG H P. The in fluence of SMT reflow soldering temperature curve on the welding quality[J]. Journal of Qinghai University (Nature Science),2009,27(2):13-15. DOI: 10.3969/j.issn.1006-8996.2009.02.004. [13] 安彤. 焊锡接点金属间化合物(IMC)微结构演化与微观—宏观力学行为关系研究[D]. 北京: 北京工业大学, 2014.AN T. Investigation on the relationship between the microstructure evolution of the intermetallic compounds in solder joints and the micro-and macro-mechanical behavior[D]. Beijing: Beijing University of Technology, 2014. [14] DE MOURA M F S F, MORAIS J J L, DOURADO N. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test[J]. Engineering Fracture Mechanics,2008,75(13):3852-3865. DOI: 10.1016/j.engfracmech.2008.02.006. [15] DE MOURA M F S F, CAMPILHO R D S G, GONçALVES J P M. Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading[J]. Composites Science and Technology,2008,68(10-11):2224-2230. DOI: 10.1016/j.compscitech.2008.04.003. [16] HASHEMI S, KINLOCH A J, WILLIAMS J M. The analysis of interlaminar fracture in uniaxial fibre-polymer composites[J]. Proceedings of the Royal Society of A:Mathematical, Physical and Engineering Sciences,1990,427(1872):173-199. DOI: 10.1098/rspa.1990.0007. -