Recent progresses of miniaturized microwave devices based on spoof surface plasmon polaritons
-
摘要:
人工表面等离激元(Spoof Surface Palsmon Polaritons, SSPP)是由入射电磁波与电磁媒质相互作用,导致媒质表面电子发生集体振荡,所产生的一种表面混合电磁模式,具有波动与粒子的双重性质. 在空气一侧,SSPP表现出波动的性质,以电磁波的形式沿媒质界面纵向传输,而在界面法向,场以指数函数衰减;在电磁媒质一侧,SSPP表现为群电子振荡的性质,在法向,场依然按照指数函数衰减;并且,群电子振荡的振幅略小于电磁波波动的振幅. 因此,SSPP具有诸多奇特的电磁性质,如场局域特性,深亚波长特性,以及非线性频率色散特性,等等,在微波电路设计、天线设计、隐身材料与隐身结构设计、电子对抗等领域都具有非常重要的应用价值. 文章主要综述了SSPP在小型化微波器件方面的研究进展,包括微波集成电路、滤波器、环形器、传感器、天线、涡旋波发生器等等,为小型化微波器件设计与应用提供借鉴.
Abstract:Spoof surface plasmon polaritons (SSPP) is a hybrid surface electromagnetic (EM) mode. When electromagnetic (EM) waves impinge on an EM media, free electros on the media surface will respond collectively by oscillating in resonance with the incident EM waves. The resonance interaction between the electrons and EM waves contributes to the SSPP and gives it’s a dual nature of wave and particle. On the side of the air, the SSPP propagates along the air-media interface, and the field perpendicular to the interface decays exponentially, behaving the wave nature. On the side of the media, the SSPP behaves the nature of electrons oscillation collectively. Field perpendicular to the interface still decays exponentially. However, amplitude of the oscillating electrons is smaller than that of the EM waves. Therefore, the SSPP has unique properties, such as field enhancement, sub-wavelength, non-linear frequency-dependent dispersion, and so on, promising great values in integrated circuits, antennas design, stealth materials or structures, electronic countermeasure applications, etc. In this paper, the recent progress of SSPP-based miniaturized microwave devices is reviewed, including microwave integrated circuits, filters, circulators, sensors, antennas, and orbital angular momentum (OAM) generators and so on. It provids reference to for the design and application of miniaturized microwave devices.
-
Key words:
- spoof surface plasmon polaritons /
- miniaturization /
- microwave devices /
- integrated circuits /
- filters /
- antennas
-
图 1 介质-金属界面上的SPP[7]
Figure 1. SPP on the dielectric-conductor interface
图 4 基于SSPP的微波电路设计[24]:(a)基于SSPP的微波电路;(b)传统微带电路;(c)SSPP微波电路上的场分布;(d)传统微带电路上的场分布
Figure 4. Microwave integrated circuits based on the SSPP[24]: (a) Integrated circuits based on the SSPP; (b) Conventional integrated circuits; (c) Field distribution on the SSPP-based integrated circuits; (d) Field distribution on the conventional integrated circuits
表 1 基于SSPP的微波器件
Table 1. Microwave Devices Based on the SSPP
微波器件 性能 传导型 微波电路 集成电路[24] ①传输频段:0~15 GHz;②相比传统微带线,隔离度提高了约10 dB;
③相比传统微带线,串扰小,信号失真小功分器[26] 工作频段:2.5~39.7 GHz,传输系数约为−3 dB 耦合器[27] 前向波耦合频段:2.5~3.5 GHz,传输率约为0.6;
后向波耦合频段:5.7~6.2 GHz,传输率约为0.6环形器[28] 工作频段:5.0~6.6 GHz,插损≤0.5 dB;工作频段:
2.6~8.7 GHz,插损≤1.0 dB. 铁氧体半径r0=4.7 mm,环形器半径R=6.35 mm滤波器 带通滤波器[30] 工作频段:3.0~4.5 GHz,插损≤1.0 dB 陷波带通滤波器[32] 偏置电压/V 0 4.5 16 陷波频率/GHz 3.765/4.85 4.045/5.27 4.29/5.69 天线 共口径天线[34] 4.68~4.83 GHz,边射方向图;8.51~8.82 GHz,
倾斜方向图;11.00~17.38 GHz,端射方向图多波束天线[35] 波束数目可灵活调控 频扫天线[39] 工作频段:8.5~12.5 GHz,扫描角域:−60°~+60° 局域型 传感器[45] 谐振频率对环境介电常数变化敏感,纸覆于结构上即可导致频偏 涡旋波发生器[47] 拓扑荷从±1变化到±4,可继续拓展 -
[1] BARNES W L, DEREUX A, EBBESEN T W. Surface Plasmon subwavelength optics[J]. Nature,2003,424(6950):824-830. DOI: 10.1038/nature01937. [2] OHADI A, ELEFTHERIADES G V. A continuously tunable phase shifter using surface waves[J]. IEEE Journal of Microwaves,2021,1(4):989-996. DOI: 10.1109/JMW.2021.3102869. [3] GUO Y H, ZHANG Z J, PU M B, et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging[J]. iScience,2019,21:145-156. DOI: 10.1016/j.isci.2019.10.019. [4] HAN Y J, WANG J F, GONG S H, et al. Low RCS antennas based on dispersion engineering of spoof surface Plasmon Polaritons[J]. IEEE Transactions on Antennas and Propagation,2018,66(12):7111-7116. DOI: 10.1109/TAP.2018.2869206. [5] PANG Y Q, WANG J F, MA H, et al. Spatial k-dispersion engineering of spoof surface Plasmon polaritons for customized absorption[J]. Scientific Reports,2016,6:29429. DOI: 10.1038/srep29429. [6] 韩亚娟. 人工表面等离激元色散调控及其在天线设计的应用研究[D]. 西安: 西安电子科技大学, 2020.HAN Y J. Dispersion engineering of spoof surface Plasmon polaritons and the applications to antenna design[D]. Xi’an: Xidian University, 2020. [7] 童廉明, 徐红星. 表面等离激元−机理、应用与展望[J]. 物理,2012,41(9):582-588.TONG L M, XU H X. Surface plasmons—mechanisms, applications and perspectives[J]. Physics,2012,41(9):582-588. [8] PENDRY J B, MARTíN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science,2004,305(5685):847-848. DOI: 10.1126/science.1098999. [9] SUN W J, HE Q, SUN S L, et al. High-efficiency surface Plasmon meta-couplers: concept and microwave-regime realizations[J]. Light:Science & Applications,2016,5(1):e16003. DOI: 10.1038/lsa.2016.3. [10] WANG J F, QU S B, MA H, et al. High-efficiency spoof Plasmon polariton coupler mediated by gradient metasurfaces[J]. Applied Physics Letters,2012,101(20):201104. DOI: 10.1063/1.4767219. [11] MA H F, SHEN X P, CHENG Q, et al. Broadband and high-efficiency conversion from guided waves to spoof surface Plasmon polaritons[J]. Laser & Photonics Reviews,2014,8(1):146-151. DOI: 10.1002/lpor.201300118. [12] LIU L L, LI Z, XU B Z, et al. Dual-band trapping of spoof surface Plasmon polaritons and negative group velocity realization through microstrip line with gradient holes[J]. Applied Physics Letters,2015,107(20):201602. DOI: 10.1063/1.4935976. [13] LIAO Z, PAN B C, SHEN X P, et al. Multiple Fano resonances in spoof localized surface plasmons[J]. Optics Express,2014,22(13):15710-15717. DOI: 10.1364/OE.22.015710. [14] GAO F, GAO Z, ZHANG Y M, et al. Vertical transport of subwavelength localized surface electromagnetic modes[J]. Laser & Photonics Reviews,2015,9(5):571-576. DOI: 10.1002/lpor.201500117. [15] SU X Q, XU Q, LU Y C, et al. Gradient index devices for terahertz spoof surface Plasmon polaritons[J]. ACS Photonics,2020,7(12):3305-3312. DOI: 10.1021/acsphotonics.0c01323. [16] TIAN X, ZENG Q H, NIKOLAYEV D, et al. Conformal propagation and near-omnidirectional radiation with surface plasmonic clothing[J]. IEEE Transactions on Antennas and Propagation,2020,68(11):7309-7319. DOI: 10.1109/TAP.2020.2998216. [17] ZHANG Q L, CHAN C H. Compact spoof surface Plasmon polaritons waveguide integrated with blind vias and its application[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(12):3038-3042. DOI: 10.1109/TCSII.2020.3001297. [18] ZHANG L P, ZHANG H C, TANG M, et al. Integrated multi-scheme digital modulations of spoof surface Plasmon polaritons[J]. Science China Information Sciences,2020,63(10):202302. DOI: 10.1007/s11432-020-2972-0. [19] WU J J, HOU D J, LIU K X, et al. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface Plasmon polaritons[J]. Optics Express,2014,22(22):26777-26787. DOI: 10.1364/oe.22.026777. [20] ZHANG H C, ZHANG Q, LIU J F, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports,2016,6:23396. DOI: 10.1038/srep23396. [21] LI J L, YIN S Y, SUN C G, et al. Spoof surface Plasmon polaritons for time reversal electromagnetic signals[J]. IEEE Antennas and Wireless Propagation Letters,2021,20(8):1547-1551. DOI: 10.1109/LAWP.2021.3091176. [22] NIU L Y, HE P H, FAN Y, et al. Gain-associated nonlinear phenomenon in single-conductor odd-mode plasmonic metamaterials[J]. Laser & Photonics Reviews,2022,16(6):2100619. DOI: 10.1002/lpor.202100619. [23] LIU X Y, LEI Y, ZHENG X, et al. Reconfigurable spoof plasmonic coupler for dynamic switching between forward and backward propagations[J]. Advanced Materials Technologies,2022,7(8):2200129. DOI: 10.1002/admt.202200129. [24] ZHANG H C, CUI T J, ZHANG Q, et al. Breaking the challenge of signal integrity using time-domain spoof surface Plasmon polaritons[J]. ACS Photonics,2015,2(9):1333-1340. DOI: 10.1021/acsphotonics.5b00316. [25] 杨保佳, 周永金. 基于金属-绝缘体-金属光栅结构的功分器及分波器设计[J]. 中国科技论文,2014,9(10):1087-1090. DOI: 10.3969/j.issn.2095-2783.2014.10.002.YANG B J, ZHOU Y J. A power divider and a frequency splitter based on plasmonic MIM grating structures[J]. China Sciencepaper,2014,9(10):1087-1090. DOI: 10.3969/j.issn.2095-2783.2014.10.002. [26] WANG J, ZHAO L, HAO Z C, et al. Splitting spoof surface Plasmon polaritons to different directions with high efficiency in ultra-wideband frequencies[J]. Optics Letters,2019,44(13):3374-3377. DOI: 10.1364/ol.44.003374. [27] LIU X Y, FENG Y J, ZHU B, et al. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure[J]. Scientific Reports,2016,6:20448. DOI: 10.1038/srep20448. [28] QIU T S, WANG J F, LI Y F, et al. Circulator based on spoof surface Plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters,2017,16:821-824. DOI: 10.1109/lawp.2016.2605738. [29] QIU T S, WANG J F, LI Y F, et al. Broadband circulator based on spoof surface Plasmon polaritons[J]. Journal of Physics D: Applied Physics,2016,49(35):355002. DOI: 10.1088/0022-3727/49/35/355002. [30] WANG R L, WANG J F, HAN Y J, et al. Miniaturized suspended strip-line bandpass filter based on spoof surface Plasmon polaritons[J]. Journal of Physics D:Applied Physics,2019,52(30):325101. DOI: 10.1088/1361-6463/ab2093. [31] LIU L L, HU Y J, LI R Z, et al. Compact and narrow-band bandpass filter using spoof surface Plasmon polaritons[J]. IEEE Photonics Technology Letters,2021,33(13):676-679. DOI: 10.1109/LPT.2021.3085580. [32] ZHANG Q L, CHAN C H. Spoof surface Plasmon polariton filter with reconfigurable dual and non-linear notched characteristics[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2021,68(8):2815-2819. DOI: 10.1109/TCSII.2021.3067936. [33] ZHANG Q Y, LI J L, CHEN H T, et al. High-fidelity short-pulse monopulse antenna based on extended Goubau line structure with time domain analysis and design[J]. IEEE Transactions on Antennas and Propagation,2022,70(4):2520-2530. DOI: 10.1109/TAP.2021.3137204. [34] HAN Y J, GONG S H, WANG J F, et al. Shared-aperture antennas based on even- and odd-mode spoof surface Plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation,2020,68(4):3254-3258. DOI: 10.1109/TAP.2019.2944548. [35] HAN Y J, LI Y F, MA H, et al. Multibeam antennas based on spoof surface Plasmon polaritons mode coupling[J]. IEEE Transactions on Antennas and Propagation,2017,65(3):1187-1192. DOI: 10.1109/tap.2016.2647588. [36] 韩亚娟. 基于人工表面等离激元的端射天线设计研究[D]. 西安: 空军工程大学, 2017. HAN Y J. Endfire antennas based on spoof surface Plasmon polaritons[D]. Xi’an: Air Force Engineering University, 2017. [37] ZHANG H, WANG J F, HAN Y J, et al. Multibeam antennas with customized elevation angles based on near-field magnetic field coupling of metamaterials[J]. Journal of Physics D:Applied Physics,2022,55(43):43LT01. DOI: 10.1088/1361-6463/ac8c4f. [38] WANG X, LI Z, FEI X Z, et al. A holographic antenna based on spoof surface Plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters,2018,17(8):1528-1532. DOI: 10.1109/LAWP.2018.2853103. [39] HAN Y J, WANG J F, LI Y F, et al. A frequency-scanning antenna based on hybridization of the quasi-TEM mode and spoof surface Plasmon polaritons mode[J]. Journal of Physics D:Applied Physics,2019,52(38):38LT01. DOI: 10.1088/1361-6463/ab2e8d. [40] KONG G S, MA H F, CAI B G, et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide[J]. Scientific Reports,2016,6:29600. DOI: 10.1038/srep29600. [41] KIANINEJAD A, CHEN Z N, QIU C W. A Single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain[J]. IEEE Transactions on Antennas and Propagation,2017,65(2):681-687. DOI: 10.1109/tap.2016.2633161. [42] ZU H R, WU B, SU T. Beam manipulation of antenna with large frequency-scanning angle based on field confinement of spoof surface Plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation,2022,70(4):3022-3027. DOI: 10.1109/TAP.2021.3118739. [43] DU X Y, REN J, LI H D, et al. Design of a leaky-wave antenna featuring beam scanning from backfire utilizing odd-mode spoof surface Plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation,2021,69(10):6971-6976. DOI: 10.1109/TAP.2021.3076166. [44] YANG B J, ZHOU Y J, XIAO Q X. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line[J]. Optics Express,2015,23(16):21434-21442. DOI: 10.1364/OE.23.021434. [45] ZHANG X R, CUI W Y, LEI Y, et al. Spoof localized surface plasmons for sensing applications[J]. Advanced Materials Technologies,2021,6(4):2000863. DOI: 10.1002/admt.202000863. [46] QIN P F, YANG Y H, MUSA M Y, et al. Toroidal localized spoof plasmons on compact metadisks[J]. Advanced Science,2018,5(3):1700487. DOI: 10.1002/advs.201700487. [47] SU G X, SU H, HU L M, et al. Demonstration of microwave plasmonic-like vortices with tunable topological charges by a single metaparticle[J]. Applied Physics Letters,2021,118(24):241106. DOI: 10.1063/5.0053834. [48] YANG J, ZHENG X Z, WANG J F, et al. Customizing the topological charges of vortex modes by exploiting symmetry principles[J]. Laser & Photonics Reviews,2022,16(4):2100373. DOI: 10.1002/lpor.202100373. [49] 张浩驰. 人工表面等离激元的基本原理、器件综合及系统集成[D]. 南京: 东南大学, 2020. -