• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工表面等离激元的小型化微波器件研究进展

韩亚娟 刘莹玉 赵福立 富新民 邱天硕 丁畅 王甲富 屈绍波

韩亚娟,刘莹玉,赵福立,等.基于人工表面等离激元的小型化微波器件研究进展[J]. 微电子学与计算机,2023,40(1):31-40 doi: 10.19304/J.ISSN1000-7180.2022.0670
引用本文: 韩亚娟,刘莹玉,赵福立,等.基于人工表面等离激元的小型化微波器件研究进展[J]. 微电子学与计算机,2023,40(1):31-40 doi: 10.19304/J.ISSN1000-7180.2022.0670
HAN Y J,LIU Y Y,ZHAO F L,et al. Recent progresses of miniaturized microwave devices based on spoof surface plasmon polaritons[J]. Microelectronics & Computer,2023,40(1):31-40 doi: 10.19304/J.ISSN1000-7180.2022.0670
Citation: HAN Y J,LIU Y Y,ZHAO F L,et al. Recent progresses of miniaturized microwave devices based on spoof surface plasmon polaritons[J]. Microelectronics & Computer,2023,40(1):31-40 doi: 10.19304/J.ISSN1000-7180.2022.0670

基于人工表面等离激元的小型化微波器件研究进展

doi: 10.19304/J.ISSN1000-7180.2022.0670
基金项目: 陕西省科学技术协会人才托举计划项目资助(20220102);国家自然科学基金资助项目(62101588)
详细信息
    作者简介:

    韩亚娟:女,(1989-),博士,讲师. 研究方向为人工结构功能材料设计,及其在天线中的应用

    刘莹玉:女,(1991-),博士,工程师. 研究方向为三维微纳集成技术以及射频微系统封装

    赵福立:男,(1983-),硕士,工程师. 研究方向为信号与信息处理、雷达维修等

    富新民:男,(1995-),博士研究生. 研究方向为基于超表面的电磁调控及隐身应用研究

    邱天硕:男,(1992-),博士,讲师. 研究方向为超材料与智能设计

    丁畅:男,(1991-),博士,讲师. 研究方向为基于液晶材料的可调微波器件设计方法研究

    屈绍波:男,(1965-),博士,教授. 研究方向为人工结构功能材料、隐身材料与隐身技术等

    通讯作者:

    男,(1981-),博士,教授. 研究方向为人工结构功能材料、隐身材料与隐身技术等.E-mail:wangjiafu1981@126.com

  • 中图分类号: TN603.5

Recent progresses of miniaturized microwave devices based on spoof surface plasmon polaritons

  • 摘要:

    人工表面等离激元(Spoof Surface Palsmon Polaritons, SSPP)是由入射电磁波与电磁媒质相互作用,导致媒质表面电子发生集体振荡,所产生的一种表面混合电磁模式,具有波动与粒子的双重性质. 在空气一侧,SSPP表现出波动的性质,以电磁波的形式沿媒质界面纵向传输,而在界面法向,场以指数函数衰减;在电磁媒质一侧,SSPP表现为群电子振荡的性质,在法向,场依然按照指数函数衰减;并且,群电子振荡的振幅略小于电磁波波动的振幅. 因此,SSPP具有诸多奇特的电磁性质,如场局域特性,深亚波长特性,以及非线性频率色散特性,等等,在微波电路设计、天线设计、隐身材料与隐身结构设计、电子对抗等领域都具有非常重要的应用价值. 文章主要综述了SSPP在小型化微波器件方面的研究进展,包括微波集成电路、滤波器、环形器、传感器、天线、涡旋波发生器等等,为小型化微波器件设计与应用提供借鉴.

     

  • 图 1  介质-金属界面上的SPP[7]

    Figure 1.  SPP on the dielectric-conductor interface

    图 2  SSPP耦合激发模型和基于金属方孔结构的SSPP色散曲线[8]

    Figure 2.  Excitation model of the SSPP and SSPP dispersion curve on a perfect conductor cut periodic square holes[8]

    图 3  基于电磁超表面将自由空间波耦合为SSPP[9]

    Figure 3.  Free-space wave being coupled to the SSPP based on electromagnetic metasurface[9]

    图 4  基于SSPP的微波电路设计[24]:(a)基于SSPP的微波电路;(b)传统微带电路;(c)SSPP微波电路上的场分布;(d)传统微带电路上的场分布

    Figure 4.  Microwave integrated circuits based on the SSPP[24]: (a) Integrated circuits based on the SSPP; (b) Conventional integrated circuits; (c) Field distribution on the SSPP-based integrated circuits; (d) Field distribution on the conventional integrated circuits

    图 5  基于SSPP的环形器[28]

    Figure 5.  Circulator based on the SSPP[28]

    图 6  基于SSPP的滤波器设计[30]

    Figure 6.  Filter based on the SSPP[30]

    图 7  基于SSPP的共口径天线[34]

    Figure 7.  Share-aperture antenna based on the SSPP[34]

    图 8  基于SSPP的多波束天线[36]

    Figure 8.  Multi-beam antenna based on the SSPP[36]

    图 9  基于SSPP的漏波频扫天线[39]

    Figure 9.  Leaky-wave frequency scanning antenna based on the SSPP[39]

    图 10  基于SSPP的涡旋波发生器[47]

    Figure 10.  Orbital angular momentum generator based on the SSPP[47]

    表  1  基于SSPP的微波器件

    Table  1.   Microwave Devices Based on the SSPP

    微波器件性能
    传导型微波电路集成电路[24]①传输频段:0~15 GHz;②相比传统微带线,隔离度提高了约10 dB;
    ③相比传统微带线,串扰小,信号失真小
    功分器[26]工作频段:2.5~39.7 GHz,传输系数约为−3 dB
    耦合器[27]前向波耦合频段:2.5~3.5 GHz,传输率约为0.6;
    后向波耦合频段:5.7~6.2 GHz,传输率约为0.6
    环形器[28]工作频段:5.0~6.6 GHz,插损≤0.5 dB;工作频段:
    2.6~8.7 GHz,插损≤1.0 dB. 铁氧体半径r0=4.7 mm,环形器半径R=6.35 mm
    滤波器带通滤波器[30]工作频段:3.0~4.5 GHz,插损≤1.0 dB
    陷波带通滤波器[32]偏置电压/V04.516
    陷波频率/GHz3.765/4.854.045/5.274.29/5.69
    天线共口径天线[34]4.68~4.83 GHz,边射方向图;8.51~8.82 GHz,
    倾斜方向图;11.00~17.38 GHz,端射方向图
    多波束天线[35]波束数目可灵活调控
    频扫天线[39]工作频段:8.5~12.5 GHz,扫描角域:−60°~+60°
    局域型传感器[45]谐振频率对环境介电常数变化敏感,纸覆于结构上即可导致频偏
    涡旋波发生器[47]拓扑荷从±1变化到±4,可继续拓展
    下载: 导出CSV
  • [1] BARNES W L, DEREUX A, EBBESEN T W. Surface Plasmon subwavelength optics[J]. Nature,2003,424(6950):824-830. DOI: 10.1038/nature01937.
    [2] OHADI A, ELEFTHERIADES G V. A continuously tunable phase shifter using surface waves[J]. IEEE Journal of Microwaves,2021,1(4):989-996. DOI: 10.1109/JMW.2021.3102869.
    [3] GUO Y H, ZHANG Z J, PU M B, et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging[J]. iScience,2019,21:145-156. DOI: 10.1016/j.isci.2019.10.019.
    [4] HAN Y J, WANG J F, GONG S H, et al. Low RCS antennas based on dispersion engineering of spoof surface Plasmon Polaritons[J]. IEEE Transactions on Antennas and Propagation,2018,66(12):7111-7116. DOI: 10.1109/TAP.2018.2869206.
    [5] PANG Y Q, WANG J F, MA H, et al. Spatial k-dispersion engineering of spoof surface Plasmon polaritons for customized absorption[J]. Scientific Reports,2016,6:29429. DOI: 10.1038/srep29429.
    [6] 韩亚娟. 人工表面等离激元色散调控及其在天线设计的应用研究[D]. 西安: 西安电子科技大学, 2020.

    HAN Y J. Dispersion engineering of spoof surface Plasmon polaritons and the applications to antenna design[D]. Xi’an: Xidian University, 2020.
    [7] 童廉明, 徐红星. 表面等离激元−机理、应用与展望[J]. 物理,2012,41(9):582-588.

    TONG L M, XU H X. Surface plasmons—mechanisms, applications and perspectives[J]. Physics,2012,41(9):582-588.
    [8] PENDRY J B, MARTíN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science,2004,305(5685):847-848. DOI: 10.1126/science.1098999.
    [9] SUN W J, HE Q, SUN S L, et al. High-efficiency surface Plasmon meta-couplers: concept and microwave-regime realizations[J]. Light:Science & Applications,2016,5(1):e16003. DOI: 10.1038/lsa.2016.3.
    [10] WANG J F, QU S B, MA H, et al. High-efficiency spoof Plasmon polariton coupler mediated by gradient metasurfaces[J]. Applied Physics Letters,2012,101(20):201104. DOI: 10.1063/1.4767219.
    [11] MA H F, SHEN X P, CHENG Q, et al. Broadband and high-efficiency conversion from guided waves to spoof surface Plasmon polaritons[J]. Laser & Photonics Reviews,2014,8(1):146-151. DOI: 10.1002/lpor.201300118.
    [12] LIU L L, LI Z, XU B Z, et al. Dual-band trapping of spoof surface Plasmon polaritons and negative group velocity realization through microstrip line with gradient holes[J]. Applied Physics Letters,2015,107(20):201602. DOI: 10.1063/1.4935976.
    [13] LIAO Z, PAN B C, SHEN X P, et al. Multiple Fano resonances in spoof localized surface plasmons[J]. Optics Express,2014,22(13):15710-15717. DOI: 10.1364/OE.22.015710.
    [14] GAO F, GAO Z, ZHANG Y M, et al. Vertical transport of subwavelength localized surface electromagnetic modes[J]. Laser & Photonics Reviews,2015,9(5):571-576. DOI: 10.1002/lpor.201500117.
    [15] SU X Q, XU Q, LU Y C, et al. Gradient index devices for terahertz spoof surface Plasmon polaritons[J]. ACS Photonics,2020,7(12):3305-3312. DOI: 10.1021/acsphotonics.0c01323.
    [16] TIAN X, ZENG Q H, NIKOLAYEV D, et al. Conformal propagation and near-omnidirectional radiation with surface plasmonic clothing[J]. IEEE Transactions on Antennas and Propagation,2020,68(11):7309-7319. DOI: 10.1109/TAP.2020.2998216.
    [17] ZHANG Q L, CHAN C H. Compact spoof surface Plasmon polaritons waveguide integrated with blind vias and its application[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(12):3038-3042. DOI: 10.1109/TCSII.2020.3001297.
    [18] ZHANG L P, ZHANG H C, TANG M, et al. Integrated multi-scheme digital modulations of spoof surface Plasmon polaritons[J]. Science China Information Sciences,2020,63(10):202302. DOI: 10.1007/s11432-020-2972-0.
    [19] WU J J, HOU D J, LIU K X, et al. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface Plasmon polaritons[J]. Optics Express,2014,22(22):26777-26787. DOI: 10.1364/oe.22.026777.
    [20] ZHANG H C, ZHANG Q, LIU J F, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports,2016,6:23396. DOI: 10.1038/srep23396.
    [21] LI J L, YIN S Y, SUN C G, et al. Spoof surface Plasmon polaritons for time reversal electromagnetic signals[J]. IEEE Antennas and Wireless Propagation Letters,2021,20(8):1547-1551. DOI: 10.1109/LAWP.2021.3091176.
    [22] NIU L Y, HE P H, FAN Y, et al. Gain-associated nonlinear phenomenon in single-conductor odd-mode plasmonic metamaterials[J]. Laser & Photonics Reviews,2022,16(6):2100619. DOI: 10.1002/lpor.202100619.
    [23] LIU X Y, LEI Y, ZHENG X, et al. Reconfigurable spoof plasmonic coupler for dynamic switching between forward and backward propagations[J]. Advanced Materials Technologies,2022,7(8):2200129. DOI: 10.1002/admt.202200129.
    [24] ZHANG H C, CUI T J, ZHANG Q, et al. Breaking the challenge of signal integrity using time-domain spoof surface Plasmon polaritons[J]. ACS Photonics,2015,2(9):1333-1340. DOI: 10.1021/acsphotonics.5b00316.
    [25] 杨保佳, 周永金. 基于金属-绝缘体-金属光栅结构的功分器及分波器设计[J]. 中国科技论文,2014,9(10):1087-1090. DOI: 10.3969/j.issn.2095-2783.2014.10.002.

    YANG B J, ZHOU Y J. A power divider and a frequency splitter based on plasmonic MIM grating structures[J]. China Sciencepaper,2014,9(10):1087-1090. DOI: 10.3969/j.issn.2095-2783.2014.10.002.
    [26] WANG J, ZHAO L, HAO Z C, et al. Splitting spoof surface Plasmon polaritons to different directions with high efficiency in ultra-wideband frequencies[J]. Optics Letters,2019,44(13):3374-3377. DOI: 10.1364/ol.44.003374.
    [27] LIU X Y, FENG Y J, ZHU B, et al. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure[J]. Scientific Reports,2016,6:20448. DOI: 10.1038/srep20448.
    [28] QIU T S, WANG J F, LI Y F, et al. Circulator based on spoof surface Plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters,2017,16:821-824. DOI: 10.1109/lawp.2016.2605738.
    [29] QIU T S, WANG J F, LI Y F, et al. Broadband circulator based on spoof surface Plasmon polaritons[J]. Journal of Physics D: Applied Physics,2016,49(35):355002. DOI: 10.1088/0022-3727/49/35/355002.
    [30] WANG R L, WANG J F, HAN Y J, et al. Miniaturized suspended strip-line bandpass filter based on spoof surface Plasmon polaritons[J]. Journal of Physics D:Applied Physics,2019,52(30):325101. DOI: 10.1088/1361-6463/ab2093.
    [31] LIU L L, HU Y J, LI R Z, et al. Compact and narrow-band bandpass filter using spoof surface Plasmon polaritons[J]. IEEE Photonics Technology Letters,2021,33(13):676-679. DOI: 10.1109/LPT.2021.3085580.
    [32] ZHANG Q L, CHAN C H. Spoof surface Plasmon polariton filter with reconfigurable dual and non-linear notched characteristics[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2021,68(8):2815-2819. DOI: 10.1109/TCSII.2021.3067936.
    [33] ZHANG Q Y, LI J L, CHEN H T, et al. High-fidelity short-pulse monopulse antenna based on extended Goubau line structure with time domain analysis and design[J]. IEEE Transactions on Antennas and Propagation,2022,70(4):2520-2530. DOI: 10.1109/TAP.2021.3137204.
    [34] HAN Y J, GONG S H, WANG J F, et al. Shared-aperture antennas based on even- and odd-mode spoof surface Plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation,2020,68(4):3254-3258. DOI: 10.1109/TAP.2019.2944548.
    [35] HAN Y J, LI Y F, MA H, et al. Multibeam antennas based on spoof surface Plasmon polaritons mode coupling[J]. IEEE Transactions on Antennas and Propagation,2017,65(3):1187-1192. DOI: 10.1109/tap.2016.2647588.
    [36] 韩亚娟. 基于人工表面等离激元的端射天线设计研究[D]. 西安: 空军工程大学, 2017.

    HAN Y J. Endfire antennas based on spoof surface Plasmon polaritons[D]. Xi’an: Air Force Engineering University, 2017.
    [37] ZHANG H, WANG J F, HAN Y J, et al. Multibeam antennas with customized elevation angles based on near-field magnetic field coupling of metamaterials[J]. Journal of Physics D:Applied Physics,2022,55(43):43LT01. DOI: 10.1088/1361-6463/ac8c4f.
    [38] WANG X, LI Z, FEI X Z, et al. A holographic antenna based on spoof surface Plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters,2018,17(8):1528-1532. DOI: 10.1109/LAWP.2018.2853103.
    [39] HAN Y J, WANG J F, LI Y F, et al. A frequency-scanning antenna based on hybridization of the quasi-TEM mode and spoof surface Plasmon polaritons mode[J]. Journal of Physics D:Applied Physics,2019,52(38):38LT01. DOI: 10.1088/1361-6463/ab2e8d.
    [40] KONG G S, MA H F, CAI B G, et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide[J]. Scientific Reports,2016,6:29600. DOI: 10.1038/srep29600.
    [41] KIANINEJAD A, CHEN Z N, QIU C W. A Single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain[J]. IEEE Transactions on Antennas and Propagation,2017,65(2):681-687. DOI: 10.1109/tap.2016.2633161.
    [42] ZU H R, WU B, SU T. Beam manipulation of antenna with large frequency-scanning angle based on field confinement of spoof surface Plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation,2022,70(4):3022-3027. DOI: 10.1109/TAP.2021.3118739.
    [43] DU X Y, REN J, LI H D, et al. Design of a leaky-wave antenna featuring beam scanning from backfire utilizing odd-mode spoof surface Plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation,2021,69(10):6971-6976. DOI: 10.1109/TAP.2021.3076166.
    [44] YANG B J, ZHOU Y J, XIAO Q X. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line[J]. Optics Express,2015,23(16):21434-21442. DOI: 10.1364/OE.23.021434.
    [45] ZHANG X R, CUI W Y, LEI Y, et al. Spoof localized surface plasmons for sensing applications[J]. Advanced Materials Technologies,2021,6(4):2000863. DOI: 10.1002/admt.202000863.
    [46] QIN P F, YANG Y H, MUSA M Y, et al. Toroidal localized spoof plasmons on compact metadisks[J]. Advanced Science,2018,5(3):1700487. DOI: 10.1002/advs.201700487.
    [47] SU G X, SU H, HU L M, et al. Demonstration of microwave plasmonic-like vortices with tunable topological charges by a single metaparticle[J]. Applied Physics Letters,2021,118(24):241106. DOI: 10.1063/5.0053834.
    [48] YANG J, ZHENG X Z, WANG J F, et al. Customizing the topological charges of vortex modes by exploiting symmetry principles[J]. Laser & Photonics Reviews,2022,16(4):2100373. DOI: 10.1002/lpor.202100373.
    [49] 张浩驰. 人工表面等离激元的基本原理、器件综合及系统集成[D]. 南京: 东南大学, 2020.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  73
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-01
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回