Prediction of TSV wafer warpage based on hierarchical multiscale method
-
摘要:
随着电子封装技术的发展,以晶圆级封装为代表的先进封装技术对集成密度、封装尺寸,及其制造和服役可靠性提出了更高的要求. TSV晶圆封装结构具有典型的结构多尺度特征,这对有限元模型的建立带来很大挑战. 为此,本文提出了一种层级多尺度方法,并验证了所提方法的有效性. 围绕上述研究内容,首先,阐明了层级多尺度方法的原理和计算流程;其次采用层级多尺度方法建立了不同TSV晶圆封装工艺下的有限元模型,模拟研究了TSV转接板工艺制程中晶圆的翘曲演化,并与实验结果相对比;最后,研究了分区数量对层级多尺度方法精度的影响. 研究结果表明,计算规模相当情况下,随着分区数量的增加,计算误差明显降低. 与实验结果的对比表明,该方法有相对较高的晶圆翘曲预测精度. 此外,本文发展的层级多尺度方法具有一定的可移植性,可以应用到其它同类具有多尺度特征的封装结构可靠性分析中,为解决大规模晶圆级封装翘曲预测问题提供了一种新的解决思路.
Abstract:With the development of electronic packaging technology, wafer-level packaging is one of the representative advanced packaging methods which puts higher requirements on the integration density of the package, package size, and reliability. However, during the packaging processes, excessive wafer warpage is one of the crucial challenges to affect packaging reliability. The TSV wafer packaging structure presents typical multiscale characteristics, which poses a great challenge on the establishment of finite element models. To this end, a hierarchical multiscale approach is proposed in this paper and the effectiveness of the proposed method is verified. First, the rationale and computational process of the hierarchical multiscale approach is elucidated. Finite element model was established using the hierarchical multiscale method to simulate the warpage evolution during the TSV interposer manufacturing processes, and the simulation results agreed quite closely to the experimental results. Finally, the effect of the hierarchical multiscale approach on the accuracy of the model was investigated. The results of the study show that the computational error decreases significantly with the increase of the number of partitions for a comparable computational size. Compared with the experimental results, it shows that the method can effectively improve the predicting accuracy on wafer warpage. In addition, the developed hierarchical multiscale method is portable and can be applied to other packaging structure featuring with multiscale characteristics, providing a solution to the problem of large-scale electronic packaging.
-
Key words:
- TSV wafer /
- Electronic packaging /
- Hierarchical multiscale method /
- Warpage /
- Finite element model
-
表 1 封装结构尺寸参数
Table 1. Dimensions of packaging structure
结构 几何尺寸 结构 几何尺寸 Wafer晶圆 8吋 PI2厚度 15 μm Wafer厚度 730 μm TSV高度 200 μm 转接板长×宽 32.66 mm×25.16 mm SiO2厚度 2.5 μm PI1厚度 5 μm BPI1/BPI2厚度 15 μm M1/M2厚度 5 μm BM1厚度 5 μm 表 2 TSV转接板主要工艺制程
Table 2. Main process of TSV interposer
工艺步 1 刻蚀晶圆,TSV孔径20 μm,TSV刻蚀
深度200 um,TSV开孔率0.23%2 室温下正面RDL1电镀Cu,厚度5±1.5 μm,
RDL1金属覆盖率57%3 正面PI1(阻焊层)图形化,PI1(阻焊层)
厚度10±2 um,PI1(阻焊层)固化最高温度为210℃4 正面RDL2电镀Cu,厚度5±1.5 μm,
RDL2金属覆盖率19.26%5 正面PI2(阻焊层)图形化,PI2(阻焊层)
厚度15±3 um,PI2(阻焊层)固化最高温度为210℃6 背面键合至另一片玻璃晶圆,键合胶厚度
80-100 μm,固化条件温度为210℃7 背面旋涂并图形化PI胶,烘烤固化后形成阻焊层,
固化最高温度仍为210℃8 背面旋涂并图形化PI胶,烘烤固化后形成
阻焊层BPI1,厚度15 μm,固化温度210℃9 激光解键合,切割晶圆 材料 弹性模量/GPa 泊松比 CTE/
(ppm/℃)玻璃转化
温度/℃玻璃 73.6 0.23 3.5 / 铜 117 0.35 17 / 硅 131 0.3 2.8 / 二氧化硅 76.7 0.2 0.6 / 临时键合胶 1.2(E1)/
0.4(E2)0.38 45(CTE1)/
90(CTE2)120 聚酰亚胺 2.5 0.28 54 / 表 4 TSV转接板功能层和各区域含铜率
Table 4. TSV interposer functional layer and copper content in each area
图形区 测试区1 测试区2 测试区3 TSV层 0.78% 0.74% 0.73% 0.35% M1层 77.23% 45.00% 11.20% 11.00% PI1层 0.48% 1.20% 0.60% 2.10% M2层 24.43% 16.00% 11.20% 6.00% PI2层 3.76% 5.00% 8.85% 5.70% BPI1层 0.14% 1.00% 2.00% 2.00% BM1层 24.31% 13.00% 11.20% 11.00% BPI2层 9.58% 10.00% 5.30% 5.30% 表 5 等效材料参数
Table 5. Equivalent material properties
方向 弹性模量
/GPa泊松比 剪切模量
/GPaCTE/
(ppm/℃)TSV层 z 130.89 0.30 50.33 2.90 x,y 130.88 0.30 50.32 2.92 M1层 z 90.93 0.04 3.98 17.23 x,y 10.24 0.36 3.77 32.82 PI1层 z 3.04 0.23 0.98 47.25 x,y 2.51 0.31 0.96 57.92 M2层 z 30.47 0.03 1.28 19.29 x,y 3.29 0.38 1.19 57.22 PI2层 z 6.80 0.11 1.01 30.09 x,y 2.60 0.37 0.95 64.14 BPI1层 z 2.66 0.26 0.98 51.72 x,y 2.50 0.29 0.97 55.42 BM1层 z 30.33 0.03 1.28 19.31 x,y 3.28 0.38 1.19 57.28 BPI2层 z 13.47 0.06 1.08 22.31 x,y 2.76 0.38 1.00 63.33 -
[1] ZHANG X W, LIN J K, WICKRAMANAYAKA S, et al. Heterogeneous 2.5D integration on through silicon interposer[J]. Applied Physics Reviews,2015,2(2):021308. DOI: 10.1063/1.4921463. [2] LAU J H. Heterogeneous integrations on silicon substrates (Bridges)[M]//LAU J H. Heterogeneous Integrations. Singapore: Springer, 2019. [3] LALL P, PATEL K, NARAYAN V. Model for prediction of package-on-package warpage and the effect of process and material parameters[C]//2013 IEEE 63rd Electronic Components and Technology Conference. Las Vegas: IEEE, 2013: 608-622. [4] KATTI G, HO S W, YU L H, et al. Fabrication and assembly of Cu-RDL-Based 2.5-D low-cost through silicon interposer (LC–TSI)[J]. IEEE Design & Test,2015,32(4):23-31. DOI: 10.1109/MDAT.2015.2424429. [5] GUAN Y, ZHU Y H, MA S L, et al. Fabrication, characterization, and simulation of a low-cost TSV integration without front-side CMP process[J]. IEEE Transactions on Semiconductor Manufacturing,2016,29(2):70-78. DOI: 10.1109/TSM.2016.2518707. [6] 刘晓阳, 刘海燕, 于大全, 等. 硅通孔(TSV)转接板微组装技术研究进展[J]. 电子与封装,2015,15(8):1-8. DOI: 10.3969/j.issn.1681-1070.2015.08.001.LIU X Y, LIU H Y, YU D Q, et al. Development of micropackage technology for through silicon via (TSV) interposer[J]. Electronics & Packaging,2015,15(8):1-8. DOI: 10.3969/j.issn.1681-1070.2015.08.001. [7] PANG X F, CHUA T T, LI H Y, et al. Characterization and management of wafer stress for various pattern densities in 3D integration technology[C]//2010 Proceedings 60th Electronic Components and Technology Conference. Las Vegas: IEEE, 2010: 1866-1869. [8] CHENG G, LUO L, XU G W, et al. Effects of microstructure of copper used in redistribution layer on wafer warpage evolution during the thermal process[J]. Journal of Materials Science:Materials in Electronics,2019,30(12):11136-11144. DOI: 10.1007/s10854-019-01456-0. [9] YEH C T, WU C Y, LIN C F, et al. Cu pattern density impacts on 2.5D TSI warpage using experimental and FEM analysis[C]//IEEE 64th Electronic Components and Technology Conference. Orlando: IEEE, 2014: 297-303. [10] CHE F X, LI H Y, ZHANG X W, et al. Development of wafer-level warpage and stress modeling Methodology and its application in process optimization for TSV Wafers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2012,2(6):944-955. DOI: 10.1109/TCPMT.2012.2192732. [11] 秦飞, 沈莹, 陈思. 硅通孔转接板封装结构多尺度问题的有限元模型[J]. 工程力学,2015,32(10):191-197. DOI: 10.6052/j.issn.1000-4750.2014.04.0285.QIN F, SHEN Y, CHEN S. The Finite element model of multi-scale structures in TSV interposer packages[J]. Engineering Mechanics,2015,32(10):191-197. DOI: 10.6052/j.issn.1000-4750.2014.04.0285. [12] QIN F, ZHAO S, DAI Y W, et al. Study of warpage evolution and control for six-side molded WLCSP in different packaging processes[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2020,10(4):730-738. DOI: 10.1109/TCPMT.2020.2975571. [13] XIA K Q, ZHU Z Y, ZHANG H Z, et al. Modeling simplification for thermal mechanical stress analysis of TSV interposer stack[J]. Microelectronics Reliability,2019,96:46-50. DOI: 10.1016/j.microrel.2019.03.008. [14] BAEK J W, YANG W S, HUR M J, et al. Representative volume element analysis for wafer-level warpage using Finite Element methods[J]. Materials Science in Semiconductor Processing,2019,91:392-398. DOI: 10.1016/j.mssp.2018.12.008. [15] SU M Y, CAO L Q, LIN T Y, et al. Warpage simulation and experimental verification for 320 mm × 320 mm panel level fan-out packaging based on die-first process[J]. Microelectronics Reliability,2018,83:29-38. DOI: 10.1016/j.microrel.2018.02.010. [16] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京: 清华大学出版社, 2013.SHEN G L, HU G K, LIU B. Mechanics of composite materials[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. [17] SHIH M, CHEN K R, LEE T, et al. FE simulation model for warpage evaluation of glass interposer substrate packages[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2021,11(4):690-696. DOI: 10.1109/TCPMT.2021.3065647. [18] CHE F X, ZHANG X W, LIN J K. Reliability study of 3D IC packaging based on through-silicon interposer (TSI) and silicon-less interconnection technology (SLIT) using finite element analysis[J]. Microelectronics Reliability,2016,61:64-70. DOI: 10.1016/j.microrel.2015.12.041. -