• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层级多尺度方法的TSV晶圆翘曲预测模型研究

孙国立 秦飞 代岩伟 李宝霞

孙国立,秦飞,代岩伟,等.基于层级多尺度方法的TSV晶圆翘曲预测模型研究[J]. 微电子学与计算机,2023,40(1):130-137 doi: 10.19304/J.ISSN1000-7180.2022.0667
引用本文: 孙国立,秦飞,代岩伟,等.基于层级多尺度方法的TSV晶圆翘曲预测模型研究[J]. 微电子学与计算机,2023,40(1):130-137 doi: 10.19304/J.ISSN1000-7180.2022.0667
SUN G L,QIN F,DAI Y W,et al. Prediction of TSV wafer warpage based on hierarchical multiscale method[J]. Microelectronics & Computer,2023,40(1):130-137 doi: 10.19304/J.ISSN1000-7180.2022.0667
Citation: SUN G L,QIN F,DAI Y W,et al. Prediction of TSV wafer warpage based on hierarchical multiscale method[J]. Microelectronics & Computer,2023,40(1):130-137 doi: 10.19304/J.ISSN1000-7180.2022.0667

基于层级多尺度方法的TSV晶圆翘曲预测模型研究

doi: 10.19304/J.ISSN1000-7180.2022.0667
基金项目: 国家自然科学基金(12272012);西安微电子技术研究所创新基金资助项目(771CX2020001)
详细信息
    作者简介:

    孙国立:男,(1998-),硕士研究生. 研究方向为电子封装技术与可靠性

    代岩伟:男,(1988-),副教授. 研究方向为电子封装技术与可靠性研究、疲劳断裂及结构完整性

    李宝霞:女,(1977-),副总工艺师,博士生导师. 研究方向为TSV三维立体集成封装技术

    通讯作者:

    男,(1965-), 教授, 博士生导师. 研究方向为微电子封装技术与可靠性研究.E-mail:qfei@bjut.edu.cn

  • 中图分类号: TN

Prediction of TSV wafer warpage based on hierarchical multiscale method

  • 摘要:

    随着电子封装技术的发展,以晶圆级封装为代表的先进封装技术对集成密度、封装尺寸,及其制造和服役可靠性提出了更高的要求. TSV晶圆封装结构具有典型的结构多尺度特征,这对有限元模型的建立带来很大挑战. 为此,本文提出了一种层级多尺度方法,并验证了所提方法的有效性. 围绕上述研究内容,首先,阐明了层级多尺度方法的原理和计算流程;其次采用层级多尺度方法建立了不同TSV晶圆封装工艺下的有限元模型,模拟研究了TSV转接板工艺制程中晶圆的翘曲演化,并与实验结果相对比;最后,研究了分区数量对层级多尺度方法精度的影响. 研究结果表明,计算规模相当情况下,随着分区数量的增加,计算误差明显降低. 与实验结果的对比表明,该方法有相对较高的晶圆翘曲预测精度. 此外,本文发展的层级多尺度方法具有一定的可移植性,可以应用到其它同类具有多尺度特征的封装结构可靠性分析中,为解决大规模晶圆级封装翘曲预测问题提供了一种新的解决思路.

     

  • 图 1  TSV晶圆封装结构

    Figure 1.  The packaging structure of TSV wafer

    图 2  层级多尺度方法分析流程

    Figure 2.  Analysis process of hierarchical multiscale method

    图 3  四分之一有限元模型

    Figure 3.  Quarter finite element model

    图 4  基于层级多尺度方法的生死单元模拟过程

    Figure 4.  Simulation process of element birth and death technology based on hierarchical multiscale method

    图 5  各载荷步对应的工艺温度

    Figure 5.  Process temperature corresponding to each load step

    图 6  等效模型

    Figure 6.  Equivalent model

    图 7  全网格模型

    Figure 7.  Full meshed model

    图 8  等效模型与全网格模型Z向位移对比

    Figure 8.  Comparison of Z-directional displacement of equivalent model and the full meshed model

    图 9  工艺过程中TSV晶圆翘曲演化

    Figure 9.  TSV wafer warpage evolution during the process

    图 10  解键合后晶圆翘曲测量值

    Figure 10.  Wafer warpage measurement after debonding process

    图 11  分区数量对晶圆翘曲值的影响

    Figure 11.  Effect of the number of partitions on wafer warpage evolution

    图 12  分区数量对预测精度的影响

    Figure 12.  Impact of the number of partitions on prediction accuracy

    表  1  封装结构尺寸参数

    Table  1.   Dimensions of packaging structure

    结构几何尺寸结构几何尺寸
    Wafer晶圆8吋PI2厚度15 μm
    Wafer厚度730 μmTSV高度200 μm
    转接板长×宽32.66 mm×25.16 mmSiO2厚度2.5 μm
    PI1厚度5 μmBPI1/BPI2厚度15 μm
    M1/M2厚度5 μmBM1厚度5 μm
    下载: 导出CSV

    表  2  TSV转接板主要工艺制程

    Table  2.   Main process of TSV interposer

    工艺步
    1刻蚀晶圆,TSV孔径20 μm,TSV刻蚀
    深度200 um,TSV开孔率0.23%
    2室温下正面RDL1电镀Cu,厚度5±1.5 μm,
    RDL1金属覆盖率57%
    3正面PI1(阻焊层)图形化,PI1(阻焊层)
    厚度10±2 um,PI1(阻焊层)固化最高温度为210℃
    4正面RDL2电镀Cu,厚度5±1.5 μm,
    RDL2金属覆盖率19.26%
    5正面PI2(阻焊层)图形化,PI2(阻焊层)
    厚度15±3 um,PI2(阻焊层)固化最高温度为210℃
    6背面键合至另一片玻璃晶圆,键合胶厚度
    80-100 μm,固化条件温度为210℃
    7背面旋涂并图形化PI胶,烘烤固化后形成阻焊层,
    固化最高温度仍为210℃
    8背面旋涂并图形化PI胶,烘烤固化后形成
    阻焊层BPI1,厚度15 μm,固化温度210℃
    9激光解键合,切割晶圆
    下载: 导出CSV

    表  3  材料参数[17-18]

    Table  3.   Material properties

    材料弹性模量/GPa泊松比CTE/
    (ppm/℃)
    玻璃转化
    温度/℃
    玻璃73.60.233.5/
    1170.3517/
    1310.32.8/
    二氧化硅76.70.20.6/
    临时键合胶1.2(E1)/
    0.4(E2)
    0.3845(CTE1)/
    90(CTE2)
    120
    聚酰亚胺2.50.2854/
    下载: 导出CSV

    表  4  TSV转接板功能层和各区域含铜率

    Table  4.   TSV interposer functional layer and copper content in each area

    图形区测试区1测试区2测试区3
    TSV层0.78%0.74%0.73%0.35%
    M1层77.23%45.00%11.20%11.00%
    PI1层0.48%1.20%0.60%2.10%
    M2层24.43%16.00%11.20%6.00%
    PI2层3.76%5.00%8.85%5.70%
    BPI1层0.14%1.00%2.00%2.00%
    BM1层24.31%13.00%11.20%11.00%
    BPI2层9.58%10.00%5.30%5.30%
    下载: 导出CSV

    表  5  等效材料参数

    Table  5.   Equivalent material properties

    方向弹性模量
    /GPa
    泊松比剪切模量
    /GPa
    CTE/
    (ppm/℃)
    TSV层z130.890.3050.332.90
    x,y130.880.3050.322.92
    M1层z90.930.043.9817.23
    x,y10.240.363.7732.82
    PI1层z3.040.230.9847.25
    x,y2.510.310.9657.92
    M2层z30.470.031.2819.29
    x,y3.290.381.1957.22
    PI2层z6.800.111.0130.09
    x,y2.600.370.9564.14
    BPI1层z2.660.260.9851.72
    x,y2.500.290.9755.42
    BM1层z30.330.031.2819.31
    x,y3.280.381.1957.28
    BPI2层z13.470.061.0822.31
    x,y2.760.381.0063.33
    下载: 导出CSV
  • [1] ZHANG X W, LIN J K, WICKRAMANAYAKA S, et al. Heterogeneous 2.5D integration on through silicon interposer[J]. Applied Physics Reviews,2015,2(2):021308. DOI: 10.1063/1.4921463.
    [2] LAU J H. Heterogeneous integrations on silicon substrates (Bridges)[M]//LAU J H. Heterogeneous Integrations. Singapore: Springer, 2019.
    [3] LALL P, PATEL K, NARAYAN V. Model for prediction of package-on-package warpage and the effect of process and material parameters[C]//2013 IEEE 63rd Electronic Components and Technology Conference. Las Vegas: IEEE, 2013: 608-622.
    [4] KATTI G, HO S W, YU L H, et al. Fabrication and assembly of Cu-RDL-Based 2.5-D low-cost through silicon interposer (LC–TSI)[J]. IEEE Design & Test,2015,32(4):23-31. DOI: 10.1109/MDAT.2015.2424429.
    [5] GUAN Y, ZHU Y H, MA S L, et al. Fabrication, characterization, and simulation of a low-cost TSV integration without front-side CMP process[J]. IEEE Transactions on Semiconductor Manufacturing,2016,29(2):70-78. DOI: 10.1109/TSM.2016.2518707.
    [6] 刘晓阳, 刘海燕, 于大全, 等. 硅通孔(TSV)转接板微组装技术研究进展[J]. 电子与封装,2015,15(8):1-8. DOI: 10.3969/j.issn.1681-1070.2015.08.001.

    LIU X Y, LIU H Y, YU D Q, et al. Development of micropackage technology for through silicon via (TSV) interposer[J]. Electronics & Packaging,2015,15(8):1-8. DOI: 10.3969/j.issn.1681-1070.2015.08.001.
    [7] PANG X F, CHUA T T, LI H Y, et al. Characterization and management of wafer stress for various pattern densities in 3D integration technology[C]//2010 Proceedings 60th Electronic Components and Technology Conference. Las Vegas: IEEE, 2010: 1866-1869.
    [8] CHENG G, LUO L, XU G W, et al. Effects of microstructure of copper used in redistribution layer on wafer warpage evolution during the thermal process[J]. Journal of Materials Science:Materials in Electronics,2019,30(12):11136-11144. DOI: 10.1007/s10854-019-01456-0.
    [9] YEH C T, WU C Y, LIN C F, et al. Cu pattern density impacts on 2.5D TSI warpage using experimental and FEM analysis[C]//IEEE 64th Electronic Components and Technology Conference. Orlando: IEEE, 2014: 297-303.
    [10] CHE F X, LI H Y, ZHANG X W, et al. Development of wafer-level warpage and stress modeling Methodology and its application in process optimization for TSV Wafers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2012,2(6):944-955. DOI: 10.1109/TCPMT.2012.2192732.
    [11] 秦飞, 沈莹, 陈思. 硅通孔转接板封装结构多尺度问题的有限元模型[J]. 工程力学,2015,32(10):191-197. DOI: 10.6052/j.issn.1000-4750.2014.04.0285.

    QIN F, SHEN Y, CHEN S. The Finite element model of multi-scale structures in TSV interposer packages[J]. Engineering Mechanics,2015,32(10):191-197. DOI: 10.6052/j.issn.1000-4750.2014.04.0285.
    [12] QIN F, ZHAO S, DAI Y W, et al. Study of warpage evolution and control for six-side molded WLCSP in different packaging processes[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2020,10(4):730-738. DOI: 10.1109/TCPMT.2020.2975571.
    [13] XIA K Q, ZHU Z Y, ZHANG H Z, et al. Modeling simplification for thermal mechanical stress analysis of TSV interposer stack[J]. Microelectronics Reliability,2019,96:46-50. DOI: 10.1016/j.microrel.2019.03.008.
    [14] BAEK J W, YANG W S, HUR M J, et al. Representative volume element analysis for wafer-level warpage using Finite Element methods[J]. Materials Science in Semiconductor Processing,2019,91:392-398. DOI: 10.1016/j.mssp.2018.12.008.
    [15] SU M Y, CAO L Q, LIN T Y, et al. Warpage simulation and experimental verification for 320 mm × 320 mm panel level fan-out packaging based on die-first process[J]. Microelectronics Reliability,2018,83:29-38. DOI: 10.1016/j.microrel.2018.02.010.
    [16] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京: 清华大学出版社, 2013.

    SHEN G L, HU G K, LIU B. Mechanics of composite materials[M]. 2nd ed. Beijing: Tsinghua University Press, 2013.
    [17] SHIH M, CHEN K R, LEE T, et al. FE simulation model for warpage evaluation of glass interposer substrate packages[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2021,11(4):690-696. DOI: 10.1109/TCPMT.2021.3065647.
    [18] CHE F X, ZHANG X W, LIN J K. Reliability study of 3D IC packaging based on through-silicon interposer (TSI) and silicon-less interconnection technology (SLIT) using finite element analysis[J]. Microelectronics Reliability,2016,61:64-70. DOI: 10.1016/j.microrel.2015.12.041.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  52
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-03
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回