A review on 3D integration of inertial navigation microsystem
-
摘要:
随着“摩尔定律”日趋放缓,微系统封装集成技术成为“超越摩尔”最有前景的技术之一. 惯性微系统技术是在微机电系统(MEMS)基础上,将多种传感器通过异质异构集成技术,在硅基片上进行3D集成,开发出具有多种功能的芯片级的微小型电子系统,实现更高的集成度和更小的体积,并内置算法,实现芯片级导航、定位等功能. 该系统通过自身传感器采集到的数据信息进行自主导航,不受外界环境影响,具有很强的抗干扰能力,呈现出小型化、智能化趋势. 本文主要探讨了惯性微系统的组成部分以及MEMS惯性传感器的常见分类. 通过对国内外研究现状的梳理,重点分析了以第三代集成技术为主的惯性微系统集成的特点和研究进展.文章最后探讨了惯性微系统未来的研究方向和发展趋势.
Abstract:With Moore’s Law slowing down, microsystem packaging and integration technology has become one of the most promising technologies to “surpass Moore”. Inertial microsystem technology is based on micro-electro-mechanical system (MEMS), which integrates a variety of sensors on silicon substrate through heterogeneous integration technology, and develops microelectronic systems with various functions at chip level. Inertial microsystem technology has higher integration and smaller size. It can achieve chip-level navigation, positioning and other functions through built-in algorithms. The system navigates autonomously through the data collected by its own sensors to avoid being affected by the external environment. Therefore, it has a strong anti-interference ability, showing a trend of miniaturization and intelligence. In this paper, the components of inertial microsystems and the common classification of MEMS inertial sensors are discussed. By sorting out the current situation of domestic and foreign research, the characteristics and research progress of inertial microsystem integration , which are mainly focusing on the third generation integration technology are analyzed. Finally, the future research direction and development trend of inertial microsystems are discussed.
-
Key words:
- MEMS /
- Inertial components /
- microsystems /
- heterogeneous /
- navigation and positioning /
- 3D integration
-
表 1 具有SWaP与环境适应性的DARPA AIMS项目指标
Table 1. DARPA AIMS project indicators with SWaP & Survival Metric
SWaP与环境适应性 目标1 目标2 体积/cm3 1 1 重量/g 1 1 功耗/mW 250 250 工作温度范围/℃ −54~+85 −54~+85 抗震性(5 Hz~5 kHz)/gRMS 50 7.7 抗冲击性/g 50000 20000 表 2 DARPA新型微惯性传感器AIMS项目指标
Table 2. DARPA new micro-inertial sensor AIMS project indicators
性能参数 陀螺 加速度计 目标1 目标2 目标1 目标2 量程/°/s ±100000 ±900 ±50000 ±60 偏置重复性/°/hr 0.01 0.001 10 1 偏置环境灵敏度/°/hr 0.01 2e-5 10 0.5 标度因数重复性/ppm 1 0.01 1 1 标度因素环境
灵敏度/ppm1 1 1 1 表 3 不同级别陀螺的性能指标
Table 3. Comparison of performance indexes of different levels of gyroscope
性能指标 ADIS16137 ADIS16136 ADXRS649 ADIS16135 测量范围/°/s 1000 480 50000 300 噪声密度/(°/sec/$\sqrt{{\rm{H}}{\textit{{\rm{z}}} } }$) 0.003 6 0.0036 0.25 0.0122 非线性/% FS 0.05 0.1 0.1 0.008 带宽/Hz 400 380 2 000 335 灵敏度/°/sec/LSB 1/6 300 7.139x10−5 - 0.0125 角速度随机游走/°/$ \sqrt{h} $ 0.15 0.167 10.7 0.75 运动中偏置稳定性/°/h 2.8 4 200 6.1 抗冲击性/g 2 000 2 000 10 000 2 000 温度范围/℃ −40~+85 −40~+70 −40~+105 −40~+85 应用范围 精密仪器、平台稳定与
控制、机器人井下仪器、工业
车辆导航工业应用、
运动设备工业车辆导航、
精密仪器表 4 不同系列加速度计性能指标对比
Table 4. Comparison of performance indexes of different series accelerometers
性能指标 ADXL206 MS9100系列 HS8030系列 测量范围/g ±5 ±100 ± 30 偏置稳定性/mg - 15 22 偏置温度系数/(mg/℃) - < 5 < 1.5 谐振频率/kHz 5.5 15 6.3 比例因子温度系数/(ppm/℃) - 100 100 分辨率/mg 1 < 5.5 < 1.7 非线性/% FS ±0.2 < 1 < 0.9 带宽/Hz 0.5~2 500 0~≥100 0~≥100 波段噪声频谱密度/(ug/$\sqrt{{\rm{H}}{\textit{{\rm{z}}} } }$) 110 900 18 工作温度范围/℃ −40~+175 −55~+125 −55~+125 应用范围 航空航天和防务 陆地、海洋和空中应用的精密惯性系统 高冲击惯性测量 表 5 磁传感器相关特性对比
Table 5. Correlation characteristics of magnetic sensors
性能指标 AMR GMR TMR HALL 灵敏度 较低 较高 高 低 磁场测试范围/Gs 0.001~10 0.1~30 0.001~200 1~1000 温度特性/℃ <150 <150 <200 <150 功耗/mA 1~10 1~10 0.01~0.1 5~20 成本 适中 适中 高 低 表 6 第三代集成技术的对比
Table 6. Comparison of third generation integration technologies
时间 研究单位 集成特点 相关参数 2011 加州大学Irvine
分校[41]采用芯片折叠方式,实现3D空间配置折叠 体积小于0.5 cm3 2013 密歇根大学[43] 采用熔融石英多层垂直堆叠 体积小于13 mm3 ,Z轴环形陀螺的Q值为33260,谐振频率为90.717 kHz;Y轴加速度计的Q值为852,谐振频率为14.296 kHz. 2015 加州大学Irvine
分校[44]采用基于SOI晶圆级的高深宽比的单轴传感器双边制造工艺实现类折纸型的折叠MEMS TIMU微系统 体积小于50 mm3,速度随机游走为0.057 m/s2/$ \sqrt{h} $,偏置不稳定性小于0. 2 mg. 2018 佐治亚理工学院[45] 采用单芯片集成和晶圆级封装 整体尺寸为4.5 mm×5.5 mm×1 mm,陀螺仪精度优于10 (°) /h,加速度计精度优于100 ug 2019 ADI[47] 采用三维正交集成 整体模块尺寸为47 mm×44 mm×14 mm,陀螺运动中偏置稳定度为1.8(°)/h,角向随机游走为0.009(°)/h,加速度计量程为士8 g,运动中偏置稳定度为3.6 ug,速度随机游走(VRW)为0.008 m/s2 $\sqrt{h} $. 2020 佐治亚理工
学院[48]采用具有改进纳米间隙传感器设计的密封MEMS单片IMU 角度随机游走为0.06°/$ \sqrt{h} $,偏置不稳定性为0.85°/h;3轴加速度计的带宽大于10 kHz,分辨率低于10 ug/$ \sqrt{H{\textit{z}}} $ -
[1] 卞玉民, 胡英杰, 李博, 等. MEMS惯性传感器现状与发展趋势[J]. 计测技术,2019,39(4):50-56. DOI: 10.11823/j.issn.1674-5795.2019.04.06.BIAN Y M, HU Y J, LI B, et al. Research status and development trend of MEMS inertial sensor[J]. Metrology & Measurement Technology,2019,39(4):50-56. DOI: 10.11823/j.issn.1674-5795.2019.04.06. [2] 唐磊, 匡乃亮, 郭雁蓉, 等. 信息处理微系统的发展现状与未来展望[J]. 微电子学与计算机,2021,38(10):1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1098.TANG L, KUANG N L, GUO Y R, et al. The development status and future prospects of information processing microsystem[J]. Microelectronics & Computer,2021,38(10):1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1098. [3] 何杰, 朴继军, 朱玲瑞, 等. 先进微陀螺器件及微惯性测量单元最新研究进展[J]. 压电与声光,2019,41(3):410-415. DOI: 10.11977/j.issn.1004-2474.2019.03.021.HE J, PIAO J J, ZHU L R, et al. Recent research progress of advanced micro-gyroscope devices and MIMU[J]. Piezoelectrics & Acoustooptics,2019,41(3):410-415. DOI: 10.11977/j.issn.1004-2474.2019.03.021. [4] 夏艳. 3D集成的发展现状与趋势[J]. 中国集成电路,2011,20(7):23-28. DOI: 10.3969/j.issn.1681-5289.2011.07.002.XIA Y. Present situation and development of 3D integration[J]. China Integrated Circuit,2011,20(7):23-28. DOI: 10.3969/j.issn.1681-5289.2011.07.002. [5] 薛连莉, 沈玉芃, 徐月. 2019年国外惯性技术发展与回顾[J]. 导航定位与授时,2020,7(1):60-66. DOI: 10.19306/j.cnki.2095-8110.2020.01.009.XUE L L, SHEN Y P, XU Y. Development and review of foreign inertial technology in 2019[J]. Navigation Positioning and Timing,2020,7(1):60-66. DOI: 10.19306/j.cnki.2095-8110.2020.01.009. [6] 李莉萍. 美国发展中的导航、定位与授时微技术[J]. 计测技术,2015,35(S1):237-241.LI L P. The development of navigation, positioning and timing microtechnology in the United States[J]. Measurement & Measurement Technology,2015,35(S1):237-241. [7] LUTWAK R. Emerging microsystem technologies for autonomous positioning, navigation, and timing (PNT)[R]. USA: DARPA/MTO, 2016: 1-31. [8] 李薇, 席翔, 吴宇列. 定位导航授时微系统技术[J]. 国防科技,2015,36(5):37-41. DOI: 10.13943/j.issn1671-4547.2015.05.08.LI W, XI X, WU Y L. The introduction for micro-system technology for positioning, navigation and timing[J]. National Defense Science & Technology,2015,36(5):37-41. DOI: 10.13943/j.issn1671-4547.2015.05.08. [9] 李东兵, 杨文钰, 沈玉芃. 美国不依赖GPS的PNT技术发展现状研究[J]. 飞航导弹,2020(12):93-98. DOI: 10.16338/j.issn.1009-1319.20200841.LI D B, YANG W Y, SHEN Y P. PNT technology development status quo of the United States do not rely on GPS research[J]. Aerodynamic Missile Journal,2020(12):93-98. DOI: 10.16338/j.issn.1009-1319.20200841. [10] 薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制,2018,17(2):1-9. DOI: 10.3969/j.issn.1674-5558.2018.02.001.XUE L L, CHEN S C, CHEN X Z. Development and review of foreign inertial technology in 2017[J]. Navigation and Control,2018,17(2):1-9. DOI: 10.3969/j.issn.1674-5558.2018.02.001. [11] JOHN B. LUTWAK R. Emerging microsystem technologies for autonomous positioning, navigation, and timing (PNT)[R]. USA: DARPA/MTO, 2016: 1-31.[C]//23rd Meeting of Space-Based Positioning, Navigation and Timing, The Westin Alexandria Old Town, Alexandria, VA 22314, 2019 [12] 王浩. MEMS陀螺仪传感器专用ASIC简介及设计[J]. 中国集成电路,2019,28(6):44-50. DOI: 10.3969/j.issn.1681-5289.2019.06.008.WANG H. MEMS gyroscope sensor ASIC introduction and design[J]. China Integrated Circuit,2019,28(6):44-50. DOI: 10.3969/j.issn.1681-5289.2019.06.008. [13] 杨文钰, 李东兵, 隋毅, 等. 2020年国外不依赖卫星的导航技术发展综述[J]. 飞航导弹,2021(1):25-30. DOI: 10.16338/j.issn.1009-1319.20200848.YANG W Y, LI D B, SUI Y, et al. Review on the development of satellite-independent navigation technology abroad in 2020[J]. Aerodynamic Missile Journal,2021(1):25-30. DOI: 10.16338/j.issn.1009-1319.20200848. [14] ADIS16137[EB/OL]. [2022-09-13]. https://www.analog.com/media/cn/technical-documentation/data-sheets/ADIS16137_cn.pdf. [15] ADIS16136[EB/OL]. [2022-10-12]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16136.pdf. [16] ADIS16135[EB/OL]. [2022-10-12]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16135.pdf. [17] ADXRS649[EB/OL]. [2022-10-12]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADXRS649.pdf. [18] 王希望, 王桥, 王晴晴, 等. 基于机器视觉技术的自动爬楼轮椅[J]. 科学技术创新,2022(3):148-151. DOI: 10.3969/j.issn.1673-1328.2022.03.038.WANG X W, WANG Q, WANG Q Q, et al. Automatic building climbing wheelchair based on machine vision technology[J]. Scientific and Technological Innovation,2022(3):148-151. DOI: 10.3969/j.issn.1673-1328.2022.03.038. [19] 王思远, 韩松来, 任星宇, 等. MEMS惯性导航技术及其应用与展望[J]. 控制与信息技术,2018(6):21-26. DOI: 10.13889/j.issn.2096-5427.2018.06.004.WANG S Y, HAN S L, REN X Y, et al. MEMS inertial navigation technology and its application and prospect[J]. Control and Information Technology,2018(6):21-26. DOI: 10.13889/j.issn.2096-5427.2018.06.004. [20] LIU Y, ZHAO Y L, TIAN B, et al. Analysis and design for piezoresistive accelerometer geometry considering sensitivity, resonant frequency and cross-axis sensitivity[J]. Microsystem Technologies,2014,20(3):463-470. DOI: 10.1007/s00542-013-1894-9. [21] XIAO D B, LI Q S, HOU Z Q, et al. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure[J]. Journal of Micromechanics and Microengineering,2016,26(2):025005. DOI: 10.1088/0960-1317/26/2/025005. [22] ADXL206[EB/OL]. [2022-10-12]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL206.PDF. [23] COLIBRYS. MS9000 MEMS accelerometer[EB/OL]. [2022-08-30]. https://www.qinpex.com/singapore/ms9000/. [24] COLOBRYS. HS8030 High Shock MEMS Accelerometer[EB/OL]. [2022-08-30]. HS8030 High Shock MEMS Accelerometer-Colibrys-MEMS Accelerometers [25] 谢华江. 高性能磁性传感器集成微系统技术研究[D]. 成都: 电子科技大学, 2022.XIE H J. High-performance magnetic sensor integrated microsystem technology research[D]. Chengdu: University of Electronic Science and Technology of China, 2022. [26] 刘钰. 基于TMR传感器阵列的钢丝绳断丝缺陷检测装置及其应用研究[D]. 太原: 太原理工大学, 2019.LIU Y. Research on broken-wire detection device for wire rope based on tmr sensor array and its application[D]. Taiyuan: Taiyuan University of Technology, 2019. [27] 孙小香. ZnO-Bi2O3基压敏陶瓷的电性能优化研究[D]. 南宁: 广西大学, 2014.SUN X X. Studies of the improvement of the electrical properties of the ZnO-Bi2O3-based varistor ceramics[D]. Nanning: Guangxi University, 2014. [28] 李男男, 邢朝洋. 惯性微系统封装集成技术研究进展[J]. 导航与控制,2018,17(6):28-34. DOI: 10.3969/j.issn.1674-5558.2018.06.005.LI N N, XING C Y. Development of inertial micro-system packaging and integration technology[J]. Navigation and Control,2018,17(6):28-34. DOI: 10.3969/j.issn.1674-5558.2018.06.005. [29] 杨中磊, 朱慧, 周立彦, 等. 2.5D微系统多物理场耦合仿真及优化[J]. 微电子学与计算机,2022,39(7):121-128. DOI: 10.19304/J.ISSN1000-7180.2021.1092.YANG Z L, ZHU H, ZHOU L Y, et al. 2.5D microsystem multiphysics coupling simulation and optimization[J]. Microelectronics & Computer,2022,39(7):121-128. DOI: 10.19304/J.ISSN1000-7180.2021.1092. [30] 崔凯, 王从香, 胡永芳. 射频微系统2.5D/3D封装技术发展与应用[J]. 电子机械工程,2016,32(6):1-6. DOI: 10.3969/j.issn.1008-5300.2016.06.001.CUI K, WANG C X, HU Y F. Development and application of 2.5D/3D packaging technology for RF microsystem[J]. Electro-Mechanical Engineering,2016,32(6):1-6. DOI: 10.3969/j.issn.1008-5300.2016.06.001. [31] 马高印, 郭中洋, 刘飞, 等. 基于MCM&SOC方案的微惯性器件系统集成技术综述[J]. 导航定位与授时,2019,6(1):108-115. DOI: 10.19306/j.cnki.2095-8110.2019.01.016.MA G Y, GUO Z Y, LIU F, et al. Review on the system integration technology of micro inertial devices based on the MCM&SOC scheme[J]. Navigation Positioning and Timing,2019,6(1):108-115. DOI: 10.19306/j.cnki.2095-8110.2019.01.016. [32] 张墅野, 李振锋, 何鹏. 微系统三维异质异构集成研究进展[J]. 电子与封装,2021,21(10):100106. DOI: 10.16257/j.cnki.1681-1070.2021.1009.ZHANG S Y, LI Z F, HE P. Progress on 3D heterogeneous integration of microsystem[J]. Electronics and Packaging,2021,21(10):100106. DOI: 10.16257/j.cnki.1681-1070.2021.1009. [33] LAPADATU D, BLIXHAVN B, HOLM R, et al. SAR500-A high-precision high-stability butterfly gyroscope with north seeking capability[C]//Proceedings of the IEEE/ION Position, Location and Navigation Symposium. Indian Wells: IEEE, 2010: 6-13. [34] 吴向东. 三维集成封装中的TSV互连工艺研究进展[J]. 电子与封装,2012,12(9):1-5. DOI: 10.16257/j.cnki.1681-1070.2012.09.004.WU X D. Research status of through-silicon via interconnection for 3D integration technology[J]. Electronics & Packaging,2012,12(9):1-5. DOI: 10.16257/j.cnki.1681-1070.2012.09.004. [35] 胡杨, 蔡坚, 曹立强, 等. 系统级封装(SiP)技术研究现状与发展趋势[J]. 电子工业专用设备,2012,41(11):1-6. DOI: 10.3969/j.issn.1004-4507.2012.11.001.HU Y, CAI J, CAO L Q, et al. The research status and development trends of system in package (SiP) technology[J]. Equipment for Electronic Products Manufacturing,2012,41(11):1-6. DOI: 10.3969/j.issn.1004-4507.2012.11.001. [36] 朱健. 3D堆叠技术及TSV技术[J]. 固体电子学研究与进展,2012,32(1):73-77. DOI: 10.3969/j.issn.1000-3819.2012.01.016.ZHU J. 3D-stack and TSV technology[J]. Research & Progress of SSE,2012,32(1):73-77. DOI: 10.3969/j.issn.1000-3819.2012.01.016. [37] 李晓阳, 王伟魁, 汪守利, 等. MEMS惯性传感器研究现状与发展趋势[J]. 遥测遥控,2019,40(6):1-13. DOI: 10.13435/j.cnki.ttc.003034.LI X Y, WANG W K, WANG S L, et al. Status and development trend of MEMS inertial sensors[J]. Journal of Telemetry Tracking and Command,2019,40(6):1-13. DOI: 10.13435/j.cnki.ttc.003034. [38] 赵正平. 微系统三维集成技术的新发展[J]. 微纳电子技术,2017,54(1):1-10. DOI: 10.13250/j.cnki.wndz.2017.01.001.ZHAO Z P. New progress of the micro system three-dimensional integration technology[J]. Micronanoelectronic Technology,2017,54(1):1-10. DOI: 10.13250/j.cnki.wndz.2017.01.001. [39] DUAN X M, CAO H L, LIU Z Y. 3D stack method for micro-PNT based on TSV technology[C]//Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing: IEEE, 2017: 172-175. [40] ZHU W B, ZHANG Y F, YAZDI N. A batch-mode assembly and packaging technology for 3-axis tri-fold inertial measurement units[C]//Proceedings of the 2014 International Symposium on Inertial Sensors and Systems (ISISS). Laguna Beach: IEEE, 2014: 1-4. [41] ZOTOV S A, RIVERS M C, TRUSOV A A, et al. Folded MEMS pyramid inertial measurement unit[J]. IEEE Sensors Journal,2011,11(11):2780-2789. DOI: 10.1109/JSEN.2011.2160719. [42] 闻成. 外军“不依赖GPS导航”技术[J]. 兵器知识,2017(2):68-71. DOI: 10.19437/j.cnki.11-1470/tj.2017.02.017.WEN C. Foreign military "GPS independent navigation" technology[J]. Ordnary Knowledge,2017(2):68-71. DOI: 10.19437/j.cnki.11-1470/tj.2017.02.017. [43] CAO Z, YUAN Y, HE G, et al. Fabrication of multi-layer vertically stacked fused silica microsystems[C]//Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). Barcelona: IEEE, 2013: 810-813. [44] EFIMOVSKAYA A, SENKAL D, ASKARI S, et al. Origami-like folded mems for realization of TIMU: fabrication technology and initial demonstration[C]//Proceedings of the 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS) Proceedings. Hapuna Beach: IEEE, 2015: 1-4. [45] WEN H R, DARUWALLA A, JEONG Y, et al. Wafer-level-packaged HARPSS+ MEMS platform: Integration of robust timing and inertial measurement units (TIMU) on a single chip[C]//Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). Monterey: IEEE, 2018: 261-266. [46] AYAZI F, WEN H R, JEONG Y, et al. High-Q timing and inertial measurement unit chip (TIMU) with 3D wafer-level packaging[C]//Proceedings of the 2019 IEEE Custom Integrated Circuits Conference (CICC). Austin: IEEE, 2019: 1-8. [47] ADI. ADIS16490[EB/OL]. [2022-08-30]. https://www.analog.com/cn/products/adis16490.html. [48] AYAZI F, WEN H R, DARUWALLA A, et al. Environmentally-robust high-performance silicon TIMU chip[C]//Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). Portland: IEEE, 2020. [49] LIN D, MACDONALD R, CALBAZA D, et al. Polaris - a low cost MEMS fabrication platform for navigation-grade inertial sensors[C]//Proceedings of the 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). Kailua-Kona: IEEE, 2021: 1-4. [50] VATANPARVAR D, HII D, SHKEL A M. Fabrication process and structural characterization of fused silica-on-silicon toroidal ring gyroscope[C]//Proceedings of the 2021 IEEE Sensors. Sydney: IEEE, 2021: 1-4. [51] LIN Y W, EFIMOVSKAYA A, SHKEL A M. Folded MEMS platform based on polymeric flexible hinges for 3D integration of spatially-distributed sensors[J]. Journal of Microelectromechanical Systems,2021,30(6):907-914. DOI: 10.1109/JMEMS.2021.3109034. [52] WANG D M, ASADIAN M H, HII D, et al. Fused silica dual-shell gyroscope with in-plane actuation by out-of-plane electrodes realized using glassblowing and thru-glass-vias fabrication[C]//Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). Tokyo: IEEE, 2022: 154-157. [53] 王巍, 何胜. MEMS惯性仪表技术发展趋势[J]. 导弹与航天运载技术,2009(3):23-28. DOI: 10.3969/j.issn.1004-7182.2009.03.006.WANG W, HE S. Development of MEMS inertial instrument technology[J]. Missiles and Space Vehicles,2009(3):23-28. DOI: 10.3969/j.issn.1004-7182.2009.03.006. [54] KHIAL P P, WHITE A D, HAJIMIRI A. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement[J]. Nature Photonics,2018,12(11):671-675. DOI: 10.1038/s41566-018-0266-5. [55] GUNDETI V M. Folded MEMS approach to NMRG[D]. Irvine: University of California, 2015. [56] 陆志东, 余才佳. 微机电系统引领航空技术新变革[J]. 航空科学技术,2012(2):7-11. DOI: 10.3969/j.issn.1007-5453.2012.02.004.LU Z D, YU C J. MEMS will have a huge impact in the aviation industry[J]. Aeronautical Science and Technology,2012(2):7-11. DOI: 10.3969/j.issn.1007-5453.2012.02.004. [57] Cold atoms for navigation and other tech recommendations for defense[EB/OL]. [2022-08-22]. http://www.nextgov.com/defense/2013/11/cold-atoms-navigation-and-other-tech-recommendations-defense/74564/. -