Research status and challenges of simulation technology in electronic packaging
-
摘要:
随着微电子芯片的不断发展,对其的性能需求也日益提高,而性能需求的提升也使得对芯片中晶体管尺寸和集成度的要求也不断上升. 在后摩尔时代,芯片小型化使芯片的制造的成本和工艺要求也逐渐上升,面对这种情况,电子封装技术也更多地在实现多元化、集成化以及规模化的芯片封装功能中发挥着作用. 在电子封装技术的研究中,如何更好地预测电子封装器件的性能以及其可靠性是受该领域研究者们关注的焦点,而不断发展的仿真模拟技术使研究者们看到了解决该问题的希望. 电子封装领域的仿真模拟技术已然成为了微电子芯片技术的重要发展方向之一. 文章从热学、力学及多物理场方面对电子封装领域仿真技术的研究现状进行了介绍,并且也对该领域仿真技术发展所面临的挑战进行了梳理和分析.
Abstract:With the continuous development of microelectronic chips, the demand for performance is also increasing, and the improvement of the performance demand also makes the requirements for the size and integration of transistors in the chips rising. In the post Moore era, the cost of chip manufacturing has gradually increased and the process of chip manufacturing become more complex due to the miniaturization of chips. Facing this situation, electronic packaging technology also plays a more important role in realizing diversified, integrated and large-scale chip packaging functions. In the research of electronic packaging technology, how to better predict the performance and reliability of electronic packaging devices has received great attention from researchers, and the continuous development of simulation technology enables researchers to see the hope of solving this problem. Simulation technology of electronic packaging has become one of the important development directions of microelectronic chip technology. This paper introduces the research status of simulation technology in the field of electronic packaging from the aspects of heat, mechanics and multiple physical fields, and also sorts out and analyzes the challenges faced by the development of simulation technology in this field.
-
Key words:
- electronic package /
- simulation /
- modeling
-
-
[1] 褚正浩, 张书强, 候明刚. 2.5D/3D芯片-封装-系统协同仿真技术研究[J]. 电子与封装,2021,21(10):36-45. DOI: 10.16257/j.cnki.1681-1070.2021.1008.CHU Z H, ZHANG S Q, HOU M G. Research on chip-package-system co-simulation technology of 2.5D/3D chip[J]. Electronics & Packaging,2021,21(10):36-45. DOI: 10.16257/j.cnki.1681-1070.2021.1008. [2] CASPER T, RöMER U, DE GERSEM H, et al. Coupled simulation of transient heat flow and electric currents in thin wires: application to bond wires in microelectronic chip packaging[J]. Computers & Mathematics with Applications,2020,79(6):1781-1801. DOI: 10.1016/j.camwa.2019.10.009. [3] TOWASHIRAPORN P, SUBBARAYAN G, DESAI C S. A hybrid model for computationally efficient fatigue fracture simulations at microelectronic assembly interfaces[J]. International Journal of Solids and Structures,2005,42(15):4468-4483. DOI: 10.1016/j.ijsolstr.2004.12.012. [4] AZIZAN S. Design and development of tiny package for high voltage integrated circuit device (HVIC) in QFN package[C]//36th International Electronics Manufacturing Technology Conference. Johor: IEEE, 2014: 1-6. [5] MAGERL M, STOCKREITER C, EISENBERGER O, et al. Building interchangeable black-box models of integrated circuits for EMC simulations[C]//2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits. Edinburgh: IEEE, 2015: 258-263. [6] DUFFY A. The 10th international workshop on the electromagnetic compatibility of integrated circuits (EMC Compo 2015)[J]. IEEE Electromagnetic Compatibility Magazine,2016,5(2):90-92. DOI: 10.1109/MEMC.0.7543957. [7] SHNAWAH D A, SABRI M F M, BADRUDDIN I A. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products[J]. Microelectronics Reliability,2012,52(1):90-99. DOI: 10.1016/j.microrel.2011.07.093. [8] SONG F F, LAI P, FENG X L, et al. Application of FEM simulation technology on thermal design of electronic packaging device[C]//2010 11th International Conference on Electronic Packaging Technology & High Density Packaging. Xi'an: IEEE, 2010: 977-979. [9] NENG L Q, SONG T T, SHAO G P, et al. An accurate simulation method of package warpage experimental results based on FEM[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). Xiamen: IEEE, 2021: 1-4. [10] ZHOU J Y, WEI C, LIANG S B, et al. Three-dimensional simulation of the effects of Cu protrusion of Cu-filled TSVs on thermal fatigue behavior of micro-bump joints in 3D integration[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT). Shanghai: IEEE, 2018: 361-366. [11] SUN Z Y, DEMIRCAN E, SHROFF M D, et al. Fast electromigration immortality analysis for multisegment copper interconnect wires[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2018,37(12):3137-3150. DOI: 10.1109/TCAD.2018.2801221. [12] HE X Q, WANG J D, ZHU J H, et al. Fatigue life prediction and verification for HIC hermetical sealing under random vibration loading[J]. Applied Mechanics and Materials,2014,668-669:176-180. DOI: 10.4028/www.scientific.net/AMM.668-669.176. [13] 张筱迪, 毛明晖, 卢昶衡, 等. 基于有限元分析和机器学习的跌落所致封装结构力学行为预测[J]. 电子与封装,2021,21(2):78-85. DOI: 10.16257/j.cnki.1681-1070.2021.0201.ZHANG X D, MAO M H, LU C H, et al. Prediction of mechanical behavior of package structure subjected to drop impact based on finite element analysis and machine learning[J]. Electronics & Packaging,2021,21(2):78-85. DOI: 10.16257/j.cnki.1681-1070.2021.0201. [14] 张元祥, 梁利华, 张继成, 等. 多物理场下FCBGA焊点电迁移失效预测的数值模拟研究[J]. 力学学报,2018,50(3):487-496. DOI: 10.6052/0459-1879-18-077.ZHANG Y X, LIANG L H, ZHANG J C, et al. Modeling of electromigration failure predicting for FCBGA solder bump under multi-physical field loads[J]. Chinese Journal of Theoretical and Applied Mechanics,2018,50(3):487-496. DOI: 10.6052/0459-1879-18-077. [15] CHEN X L, CHENG J, WU H W, et al. Open failure mechanisms of FCBGA package under temperature cycling stress[C]//Proceedings of IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits. Chengdu: IEEE, 2017. [16] 高旗, 陈青松, 杨贵玉, 等. MEMS倾角传感器研究现状及发展趋势[J]. 微纳电子技术,2021,58(12):1054-1063. DOI: 10.13250/j.cnki.wndz.2021.12.002.GAO Q, CHEN Q S, YANG G Y, et al. Research status and development trends of MEMS inclinometers[J]. Micronanoelectronic Technology,2021,58(12):1054-1063. DOI: 10.13250/j.cnki.wndz.2021.12.002. [17] BATCHELOR G K, O’BRIEN R W. Thermal or electrical conduction through a granular material[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1977,355(1682):313-333. DOI: 10.1098/rspa.1977.0100. [18] DAN B, KANUPARTHI S, SUBBARAYAN G, et al. An improved network model for determining the effective thermal conductivity of particulate thermal interface materials[C]//Proceedings of ASME 2009 InterPack Conference Collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. San Francisco: ASME, 2009: 69-81. [19] VAITHEESWARAN P K, SUBBARAYAN G. Estimation of effective thermal and mechanical properties of particulate thermal interface materials by a random network model[J]. Journal of Electronic Packaging,2018,140(2):020901. DOI: 10.1115/1.4039136. [20] SU Y P, MA Q Q, LIANG T, et al. Optimization of effective thermal conductivity of thermal interface materials based on the genetic algorithm-driven random thermal network model[J]. ACS Applied Materials & Interfaces,2021,13(37):45050-45058. DOI: 10.1021/acsami.1c11963. [21] 陈志文, 梅云辉, 刘胜, 等. 电子封装可靠性: 过去、现在及未来[J]. 机械工程学报,2021,57(16):248-268. DOI: 10.3901/JME.2021.16.248.CHEN Z W, MEI Y H, LIU S, et al. Reliability in electronic packaging: past, now and future[J]. Journal of Mechanical Engineering,2021,57(16):248-268. DOI: 10.3901/JME.2021.16.248. -