• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子封装领域的仿真研究现状及挑战

张墅野 何鹏 邵建航 梁凯洺 孟俊豪 李帅 邢靖远 程靖宇 贾昕睿

张墅野,何鹏,邵建航,等.电子封装领域的仿真研究现状及挑战[J]. 微电子学与计算机,2023,40(1):75-86 doi: 10.19304/J.ISSN1000-7180.2022.0563
引用本文: 张墅野,何鹏,邵建航,等.电子封装领域的仿真研究现状及挑战[J]. 微电子学与计算机,2023,40(1):75-86 doi: 10.19304/J.ISSN1000-7180.2022.0563
ZHANG S Y,HE P,SHAO J H,et al. Research status and challenges of simulation technology in electronic packaging[J]. Microelectronics & Computer,2023,40(1):75-86 doi: 10.19304/J.ISSN1000-7180.2022.0563
Citation: ZHANG S Y,HE P,SHAO J H,et al. Research status and challenges of simulation technology in electronic packaging[J]. Microelectronics & Computer,2023,40(1):75-86 doi: 10.19304/J.ISSN1000-7180.2022.0563

电子封装领域的仿真研究现状及挑战

doi: 10.19304/J.ISSN1000-7180.2022.0563
基金项目: 中国科学院硅器件技术重点实验室开放基金(KLSDTJJ2022-5);国家重点研发计划(2020YFE0205304);重庆市自然科学基金项目资助(cstc2021jcyj-msxmX1002);中央高校基本科研业务费专项资金(AUGA5710051221);黑龙江省自然科学基金资助项目(YQ2022E024)
详细信息
    作者简介:

    张墅野:男,(1988-),博士研究生,副教授. 研究方向为电子封装与制造

    邵建航:男,(1999-),硕士研究生. 研究方向为电子封装与制造

    梁凯洺:男,(2001-),研究方向为电子封装与制造

    孟俊豪:男,(2001-),研究方向为电子封装与制造

    李帅:男,(2001-),研究方向为电子封装与制造

    邢靖远:男,(2000-),研究方向为电子封装与制造

    程靖宇:男,(2001-),研究方向为电子封装与制造

    贾昕睿:女,(2001-),研究方向为电子封装与制造

    通讯作者:

    男,(1972-),博士研究生,教授. 研究方向为电子封装与制造. E-mail:hepeng@hit.edu.cn

  • 中图分类号: TN402

Research status and challenges of simulation technology in electronic packaging

Funds: This work was financially supported by the opening fund of Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciences (KLSDTJJ2022-5),the National Key Research and Development Program of China (2020YFE0205304),Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX1002),the Fundamental Research Funds for the Central Universities (AUGA5710051221), Heilongjiang Provincial Natural Science Foundation of China (YQ2022E024)
  • 摘要:

    随着微电子芯片的不断发展,对其的性能需求也日益提高,而性能需求的提升也使得对芯片中晶体管尺寸和集成度的要求也不断上升. 在后摩尔时代,芯片小型化使芯片的制造的成本和工艺要求也逐渐上升,面对这种情况,电子封装技术也更多地在实现多元化、集成化以及规模化的芯片封装功能中发挥着作用. 在电子封装技术的研究中,如何更好地预测电子封装器件的性能以及其可靠性是受该领域研究者们关注的焦点,而不断发展的仿真模拟技术使研究者们看到了解决该问题的希望. 电子封装领域的仿真模拟技术已然成为了微电子芯片技术的重要发展方向之一. 文章从热学、力学及多物理场方面对电子封装领域仿真技术的研究现状进行了介绍,并且也对该领域仿真技术发展所面临的挑战进行了梳理和分析.

     

  • 图 1  热传导仿真模型[8]

    Figure 1.  Thermal conduction simulation model[8]

    图 2  芯片的结温和移相器内的温度分布[8]

    Figure 2.  The junction temperature of the chip and the temperature distribution within the phase shifter[8]

    图 3  扁平封装结构模拟结果[9]

    Figure 3.  The result of a simulation of the flat package structure[9]

    图 4  环形封装结构的投影波纹技术结果[9]

    Figure 4.  Results of projection ripple technology for ring packaging structures[9]

    图 5  三维集成系统中铜填充的TSV插入器组件示意图 10]

    Figure 5.  Schematic of a copper-filled TSV inserter component in a 3D integrated system[10]

    图 6  不同峰值温度下单层TSV结构的热应力(MPa)分布和红色虚线框内的局部视图[10]

    Figure 6.  Thermal stress (MPa) distribution of single-layer TSV structures at different peak temperatures and local view within red dashed boxes[10]

    图 7  不同峰值温度下三层TSV结构的热应力(MPa)分布和红色虚线框内的局部视图[10]

    Figure 7.  Thermal stress (MPa) distribution of the three-layer TSV structure at different peak temperatures and a local view within the red dotted box[10]

    图 8  蠕变耗散能密度分布(J/m3)四个循环后三层TSV结构中的微凸点,以及不同峰值温度下红色虚线框中的微凸点底部视图[10]

    Figure 8.  Creep dissipative energy density distribution (J/m3) micro-bumps in a three-layer TSV structure after four cycles, and a view of the bottom of the microconvexes in a red dotted box at different peak temperatures[10]

    图 9  数字孪生的作用示意图

    Figure 9.  Schematic diagram of the role of digital twins

  • [1] 褚正浩, 张书强, 候明刚. 2.5D/3D芯片-封装-系统协同仿真技术研究[J]. 电子与封装,2021,21(10):36-45. DOI: 10.16257/j.cnki.1681-1070.2021.1008.

    CHU Z H, ZHANG S Q, HOU M G. Research on chip-package-system co-simulation technology of 2.5D/3D chip[J]. Electronics & Packaging,2021,21(10):36-45. DOI: 10.16257/j.cnki.1681-1070.2021.1008.
    [2] CASPER T, RöMER U, DE GERSEM H, et al. Coupled simulation of transient heat flow and electric currents in thin wires: application to bond wires in microelectronic chip packaging[J]. Computers & Mathematics with Applications,2020,79(6):1781-1801. DOI: 10.1016/j.camwa.2019.10.009.
    [3] TOWASHIRAPORN P, SUBBARAYAN G, DESAI C S. A hybrid model for computationally efficient fatigue fracture simulations at microelectronic assembly interfaces[J]. International Journal of Solids and Structures,2005,42(15):4468-4483. DOI: 10.1016/j.ijsolstr.2004.12.012.
    [4] AZIZAN S. Design and development of tiny package for high voltage integrated circuit device (HVIC) in QFN package[C]//36th International Electronics Manufacturing Technology Conference. Johor: IEEE, 2014: 1-6.
    [5] MAGERL M, STOCKREITER C, EISENBERGER O, et al. Building interchangeable black-box models of integrated circuits for EMC simulations[C]//2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits. Edinburgh: IEEE, 2015: 258-263.
    [6] DUFFY A. The 10th international workshop on the electromagnetic compatibility of integrated circuits (EMC Compo 2015)[J]. IEEE Electromagnetic Compatibility Magazine,2016,5(2):90-92. DOI: 10.1109/MEMC.0.7543957.
    [7] SHNAWAH D A, SABRI M F M, BADRUDDIN I A. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products[J]. Microelectronics Reliability,2012,52(1):90-99. DOI: 10.1016/j.microrel.2011.07.093.
    [8] SONG F F, LAI P, FENG X L, et al. Application of FEM simulation technology on thermal design of electronic packaging device[C]//2010 11th International Conference on Electronic Packaging Technology & High Density Packaging. Xi'an: IEEE, 2010: 977-979.
    [9] NENG L Q, SONG T T, SHAO G P, et al. An accurate simulation method of package warpage experimental results based on FEM[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). Xiamen: IEEE, 2021: 1-4.
    [10] ZHOU J Y, WEI C, LIANG S B, et al. Three-dimensional simulation of the effects of Cu protrusion of Cu-filled TSVs on thermal fatigue behavior of micro-bump joints in 3D integration[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT). Shanghai: IEEE, 2018: 361-366.
    [11] SUN Z Y, DEMIRCAN E, SHROFF M D, et al. Fast electromigration immortality analysis for multisegment copper interconnect wires[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2018,37(12):3137-3150. DOI: 10.1109/TCAD.2018.2801221.
    [12] HE X Q, WANG J D, ZHU J H, et al. Fatigue life prediction and verification for HIC hermetical sealing under random vibration loading[J]. Applied Mechanics and Materials,2014,668-669:176-180. DOI: 10.4028/www.scientific.net/AMM.668-669.176.
    [13] 张筱迪, 毛明晖, 卢昶衡, 等. 基于有限元分析和机器学习的跌落所致封装结构力学行为预测[J]. 电子与封装,2021,21(2):78-85. DOI: 10.16257/j.cnki.1681-1070.2021.0201.

    ZHANG X D, MAO M H, LU C H, et al. Prediction of mechanical behavior of package structure subjected to drop impact based on finite element analysis and machine learning[J]. Electronics & Packaging,2021,21(2):78-85. DOI: 10.16257/j.cnki.1681-1070.2021.0201.
    [14] 张元祥, 梁利华, 张继成, 等. 多物理场下FCBGA焊点电迁移失效预测的数值模拟研究[J]. 力学学报,2018,50(3):487-496. DOI: 10.6052/0459-1879-18-077.

    ZHANG Y X, LIANG L H, ZHANG J C, et al. Modeling of electromigration failure predicting for FCBGA solder bump under multi-physical field loads[J]. Chinese Journal of Theoretical and Applied Mechanics,2018,50(3):487-496. DOI: 10.6052/0459-1879-18-077.
    [15] CHEN X L, CHENG J, WU H W, et al. Open failure mechanisms of FCBGA package under temperature cycling stress[C]//Proceedings of IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits. Chengdu: IEEE, 2017.
    [16] 高旗, 陈青松, 杨贵玉, 等. MEMS倾角传感器研究现状及发展趋势[J]. 微纳电子技术,2021,58(12):1054-1063. DOI: 10.13250/j.cnki.wndz.2021.12.002.

    GAO Q, CHEN Q S, YANG G Y, et al. Research status and development trends of MEMS inclinometers[J]. Micronanoelectronic Technology,2021,58(12):1054-1063. DOI: 10.13250/j.cnki.wndz.2021.12.002.
    [17] BATCHELOR G K, O’BRIEN R W. Thermal or electrical conduction through a granular material[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1977,355(1682):313-333. DOI: 10.1098/rspa.1977.0100.
    [18] DAN B, KANUPARTHI S, SUBBARAYAN G, et al. An improved network model for determining the effective thermal conductivity of particulate thermal interface materials[C]//Proceedings of ASME 2009 InterPack Conference Collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. San Francisco: ASME, 2009: 69-81.
    [19] VAITHEESWARAN P K, SUBBARAYAN G. Estimation of effective thermal and mechanical properties of particulate thermal interface materials by a random network model[J]. Journal of Electronic Packaging,2018,140(2):020901. DOI: 10.1115/1.4039136.
    [20] SU Y P, MA Q Q, LIANG T, et al. Optimization of effective thermal conductivity of thermal interface materials based on the genetic algorithm-driven random thermal network model[J]. ACS Applied Materials & Interfaces,2021,13(37):45050-45058. DOI: 10.1021/acsami.1c11963.
    [21] 陈志文, 梅云辉, 刘胜, 等. 电子封装可靠性: 过去、现在及未来[J]. 机械工程学报,2021,57(16):248-268. DOI: 10.3901/JME.2021.16.248.

    CHEN Z W, MEI Y H, LIU S, et al. Reliability in electronic packaging: past, now and future[J]. Journal of Mechanical Engineering,2021,57(16):248-268. DOI: 10.3901/JME.2021.16.248.
  • 加载中
图(9)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  37
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-11-16
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回