• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多机械臂系统的区域最优覆盖控制

韩俊贤 于晋伟 杨卫华

韩俊贤,于晋伟,杨卫华.多机械臂系统的区域最优覆盖控制[J]. 微电子学与计算机,2023,40(6):62-69 doi: 10.19304/J.ISSN1000-7180.2022.0527
引用本文: 韩俊贤,于晋伟,杨卫华.多机械臂系统的区域最优覆盖控制[J]. 微电子学与计算机,2023,40(6):62-69 doi: 10.19304/J.ISSN1000-7180.2022.0527
HAN J X,YU J W,YANG W H. Regional optimal coverage control of multi-manipulator systems[J]. Microelectronics & Computer,2023,40(6):62-69 doi: 10.19304/J.ISSN1000-7180.2022.0527
Citation: HAN J X,YU J W,YANG W H. Regional optimal coverage control of multi-manipulator systems[J]. Microelectronics & Computer,2023,40(6):62-69 doi: 10.19304/J.ISSN1000-7180.2022.0527

多机械臂系统的区域最优覆盖控制

doi: 10.19304/J.ISSN1000-7180.2022.0527
基金项目: 山西省自然科学基金(20210302124546)
详细信息
    作者简介:

    韩俊贤:男,(1998-),硕士研究生.研究方向为机器人控制、非线性系统

    杨卫华:男,(1984-),博士,教授,博士生导师. 研究方向为图论及其应用、非线性系统

    通讯作者:

    男,(1989-),博士, 讲师.研究方向为动力学与控制、非线性系统. E-mail:tyut_math_y@163.com

  • 中图分类号: TP241

Regional optimal coverage control of multi-manipulator systems

  • 摘要:

    针对具有强非线性特点的机械臂覆盖控制问题,基于Voronoi图理论,提出了一种多机械臂系统的区域最优覆盖控制算法. 首先,通过计算各个机械臂末端执行器的位置,将目标区域进行Voronoi划分;其次,根据凸优化理论,通过定义的描述区域覆盖控制效果的目标代价函数来衡量多机械臂系统关节以及末端执行器的移动是否最优;最后,结合机械臂系统特殊的动力学特性,给出了多机械臂系统的分布式区域最优覆盖控制器. 利用Lyapunov稳定性理论对该算法进行了稳定性分析,数值仿真实验表明了算法的实际有效性,即所提算法可以使得多机械臂系统的末端执行器在代价函数值最小的情况下到达相应Voronoi区域质心并且速度渐近收敛到零,形成对目标区域的最优覆盖. 特别地,该算法以机械臂为研究对象,丰富了现有的覆盖控制智能体模型研究,此外基于机械臂的非线性结构特性,算法中所设计的任务空间覆盖控制律,还可以应用到二阶系统智能体的覆盖控制研究中,拓宽了现有的基于一阶系统的覆盖控制研究.

     

  • 图 1  二连杆机械臂结构示意图

    Figure 1.  Structure diagram of two link manipulator

    图 2  Voronoi区域及其质心示意图

    Figure 2.  Diagram of Voronoi regions and their centroids

    图 3  机械臂末端轨迹图

    Figure 3.  Trajectory diagram of manipulator end effectors

    图 4  机械臂区域覆盖过程图

    Figure 4.  Trajectory diagram of manipulator end effectors

    图 5  机械臂关节速度及末端位置变化图

    Figure 5.  Variation diagram of joint speed and end position of manipulators

    多机械臂系统最优覆盖控制算法总体框架
    Input:多机械臂系统初始关节角$q=[q_{1}, \cdots, q_{n}]^{{\rm{T}}}$;末端执行器初始位置$P=[p_{1}, \cdots, p_{n}]^{{\rm{T}}}$;目标区域的敏感度函数$ \phi({e}) $;任务执行时间$ t $.
    Output:多机械臂系统的末端移动轨迹、末端位置变化、关节速度变化及多机械臂最优分布;
    1. 初始化:机械臂的关节角速度$d q=\left[\dot{q}_1, \cdots, \dot{q}_n\right]^{\rm{T}}$,末端速度$d P=\left[\dot{p}_1, \dot{p}_2, \cdots, \dot{p}_n\right]^{\rm{T}}$,末端加速度$d d P=\left[\ddot{p}_1, \ddot{p}_2, \cdots, \ddot{p}_n\right]^{\rm{T}}$;
    2. 根据当前每个机械臂末端执行器的位置对目标区域进行Voronoi划分,并获得每个Voronoi区域的质心和质量信息;
    3. 计算末端执行器位置与相应区域质心的距离$d=[\|p_1-C_{V_1}\|, \cdots,\|p_n- C_{V_v}\|]^{\rm{T}}$;
    4. 若$ d>0$或$ d P \neq 0$,进入步骤5;
     若$ d=0$且$ d P=0$,进入步骤6;
    5. 由控制器(10)计算机械臂的动力输入$\tau=\left[\tau_1, \tau_2, \cdots, \tau_n\right]^{\rm{T}}$,得到下一时刻的机械臂的关节角位移$q=\left[q_1, \cdots, q_n\right]^{\rm{T}}$、关节角速度$d q=\left[\dot{q}_1, \cdots, \dot{q}_n\right]^{\rm{T }}$、多机械臂系统末端的位置$P=[p_1, \cdots, p_n]^{\rm{T}}$和速度${d P}=\left[\dot{p}_1, \dot{p}_2, \cdots, \dot{p}_n\right]^{\rm{T}}$,重复步骤2到4,
    6. 算法执行时间结束,多机械臂系统实现了对目标区域的最优覆盖.
    下载: 导出CSV

    表  1  多机械臂系统初始参数设定

    Table  1.   Initial parameter setting of multi-manipulator systems

    初始参数机械臂底端初始坐标关节角$ q_{1} $关节角$ q_{2} $
    机械臂1(0,0)$ \dfrac{1}{3} \pi $$ -\dfrac{1}{6} \pi $
    机械臂2(1,1)$ -\dfrac{2}{3} \pi $$ -\dfrac{1}{6} \pi $
    机械臂3(1,0)$ \dfrac{2}{3} \pi $$ \dfrac{1}{3} \pi $
    机械臂4(0,1)$ -\dfrac{1}{4} \pi $$ \dfrac{1}{6} \pi $
    下载: 导出CSV
  • [1] SHAMMA J S. Cooperative control of distributed multi-agent systems[M]. John Wiley & Sons, 2008.
    [2] LIU Z W, WENG H, YU X H, et al. Delayedimpulsive control for consensus of multiagent systems with switchingcommunication graphs[J]. IEEE Transactions on Cybernetics,2020,50(7):3045-3055. DOI: 10.1109/TCYB.2019.2926115.
    [3] XU J Z, GE M F, LIU Z W, et al. Force-reflecting hierarchical approach for human-aided teleoperation of NRS with event-triggered local communication[J]. IEEE Transactions on Industrial Electronics,2022,69(3):2843-2854. DOI: 10.1109/TIE.2021.3068678.
    [4] 王晓波, 邢建春, 李决龙, 等. 多智能体系统快速有限时间平均一致性协议研究[J]. 微电子学与计算机,2018,35(5):11-14. DOI: 10.19304/j.cnki.issn1000-7180.2018.05.003.

    WANG X B, XING J C, LI J L, et al. Finite-time average consensus protocol for multi-agent systems with a fast convergence rate[J]. Microelectronics & Computer,2018,35(5):11-14. DOI: 10.19304/j.cnki.issn1000-7180.2018.05.003.
    [5] 甄冒发, 徐振峰, 谢宇. 多自由度机器人惯性误差反馈融合闭环控制[J]. 微电子学与计算机,2020,37(12):77-80. DOI: 10.19304/j.cnki.issn1000-7180.2020.12.015.

    ZHEN M F, XU Z F, XIE Y. A closed-loop control method for inertial error feedback fusion of multi-degree-of-freedom robot[J]. Microelectronics & Computer,2020,37(12):77-80. DOI: 10.19304/j.cnki.issn1000-7180.2020.12.015.
    [6] XIAO H, CUI R X, XU D M. A sampling-based Bayesian approachfor cooperative multiagentonline search with resource constraints[J]. IEEE Transactions on Cybernetics,2018,48(6):1773-1785. DOI: 10.1109/TCYB.2017.2715228.
    [7] HU X, LIU Z W, WENG H, et al. Voltage control fordistribution networks via coordinated regulation of active and reactivepower of DGs[J]. IEEE Transactions on Smart Grid,2020,11(5):4017-4031. DOI: 10.1109/TSG.2020.2989828.
    [8] LI L L, ZHANG X Y, YU E W, et al. Cooperative search fordynamic targets by multiple UAVs with communication data losses[J]. ISA Transactions,2021,114:230-241. DOI: 10.1016/j.isatra.2020.12.055.
    [9] ZHENG X M, KOENIGS, KEMPED, e al. Multirobot forest coverage for weighted and unweighted terrain[J]. IEEE Transactions on Robotics,2010,26(6):1018-1031. DOI: 10.1109/TRO.2010.2072271.
    [10] HANAY Y S, GAZIV. Distributed sensor deployment usingpotential fields[J]. Ad Hoc Networks,2017,67:77-86. DOI: 10.1016/j.adhoc.2017.09.006.
    [11] YU D X, XU H, CHENCLP, et al. Dynamic coverage control based on K-means[J]. IEEE Transactions on Industrial Electronics,2022,69(5):5333-5341. DOI: 10.1109/TIE.2021.3080205.
    [12] CORTES J, MARTINEZ S, KARATAS T, et al. Coverage control for mobile sensing networks[J]. IEEE Transactions on Robotics and Automation,2004,20(2):243-255. DOI: 10.1109/TRA.2004.824698.
    [13] JIANG B M, SUN Z Y, ANDERSON B D O, et al. Higher order mobile coverage control with applications to clustering of discrete sets[J]. Automatica,2019,102:27-33. DOI: 10.1016/j.automatica.2018.12.028.
    [14] SUN Q H, CHI M, LIU Z W, et al. Observer-based coveragecontrol of unicycle mobile robot network in dynamic environment[J]. Journal of the Franklin Institute,2022. DOI: 10.1016/j.jfranklin.2022.06.050.
    [15] LIU T R, VELNI J M. Multi-agent systems coverage control in mixed-dimensionaland hybrid environments[J]. IFAC-PapersOnLine,2021,54(20):765-770. DOI: 10.1016/j.ifacol.2021.11.264.
    [16] ABDULGHAFOOR A, BAKOLAS E. Distributed coverage control of multi-agent networks with guaranteed collision avoidance in cluttered environments[J]. IFAC-PapersOnLine,2021,54(20):771-776. DOI: 10.1016/j.ifacol.2021.11.265.
    [17] KWOK A, MARTÌNEZ S. Unicyclecoverage control via hybrid modeling[J]. IEEE Transactionson Automatic Control,2010,55(2):528-532. DOI: 10.1109/TAC.2009.2037473.
    [18] CARRONA, ZEILINGERM N. Model predictive coveragecontrol[J]. IFAC-PapersOnLine,2020,53(2):6107-6112. DOI: 10.1016/j.ifacol.2020.12.1686.
    [19] CASSANDRAS C G, LI W. Sensor networks and cooperative control[J]. European Journal of Control,2005,11(4-5):436-463. DOI: 10.3166/ejc.11.436-463.
    [20] KRISHNAN V, MARTÍNEZS. A multiscale analysis of multi-agent coverage control algorithms[J]. Automatica,2022,145:110516. DOI: 10.1016/j.automatica.2022.110516.
    [21] HOWARD A, MATARIĆ M J, SUKHATME G S. Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem[M]//ASAMA H, ARAI T, FUKUDA T, et al. Distributed Autonomous Robotic Systems. Tokyo: Springer, 2002: 299-308.
    [22] ZHANG Y F, ZHU M, CHEN T, et al. Region coverage control for multiple stratospheric airships with combined self-/event-triggered mechanism[J]. Defence Technology,2022. DOI: 10.1016/j.dt.2022.04.002.
    [23] 邢萧飞. 无线传感器网络覆盖控制优化算法研究[D]. 长沙: 中南大学, 2012.

    XING X F. Optimization algorithms of coverage control for wireless sensor networks[D]. Changsha: Central South University, 2012.
    [24] ZHU C, ZHENG C L, SHU L, et al. A survey on coverage and connectivity issues in wireless sensor networks[J]. Journal of Network and Computer Applications,2012,35(2):619-632. DOI: 10.1016/j.jnca.2011.11.016.
    [25] 罗凯. 多智能体系统的动态覆盖控制研究[D]. 武汉: 华中科技大学, 2019.

    LUO K. Dynamic coverage control of multi-agent systems[D]. Wuhan: Huazhong University of Science & Technology, 2019.
    [26] SUN X M, CASSANDRAS C G, MENG X Y. Exploiting submodularity to quantify near-optimality in multi-agent coverage problems[J]. Automatica,2019,100:349-359. DOI: 10.1016/j.automatica.2018.11.020.
    [27] 张佳舒, 赵宁, 赵东亚. 基于神经网络的机械臂任务空间滑模同步控制[J]. 山东科技大学学报(自然科学版),2019,38(4):107-116. DOI: 10.16452/j.cnki.sdkjzk.2019.04.014.

    ZHANG J S, ZHAO N, ZHAO D Y. Sliding mode synchronous control for multiple robotic manipulator systems based on neural network[J]. Journal of Shandong University of Science and Technology(Natural Science),2019,38(4):107-116. DOI: 10.16452/j.cnki.sdkjzk.2019.04.014.
    [28] 左磊. 多智能体最优覆盖控制方法研究[D]. 西安: 西北工业大学, 2017.

    ZUO L. Coverage control for multi-agent systems[D]. Xi’an: Northwestern Polytechnical University, 2017.
    [29] BULLO F, CORTÉS J, MARTÍNEZ S. Distributed control of robotic networks: a mathematical approach to motion coordination algorithms[M]. Princeton: Princeton UniversityPress, 2009.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-10-26

目录

    /

    返回文章
    返回