• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边缘特征融合网络的图像去噪方法

文凯 季娟 薛晓 何如瑾

文凯,季娟,薛晓,等.基于边缘特征融合网络的图像去噪方法[J]. 微电子学与计算机,2023,40(6):25-32 doi: 10.19304/J.ISSN1000-7180.2022.0514
引用本文: 文凯,季娟,薛晓,等.基于边缘特征融合网络的图像去噪方法[J]. 微电子学与计算机,2023,40(6):25-32 doi: 10.19304/J.ISSN1000-7180.2022.0514
WEN K,JI J,XUE X,et al. Image denoising method based on edge feature fusion network[J]. Microelectronics & Computer,2023,40(6):25-32 doi: 10.19304/J.ISSN1000-7180.2022.0514
Citation: WEN K,JI J,XUE X,et al. Image denoising method based on edge feature fusion network[J]. Microelectronics & Computer,2023,40(6):25-32 doi: 10.19304/J.ISSN1000-7180.2022.0514

基于边缘特征融合网络的图像去噪方法

doi: 10.19304/J.ISSN1000-7180.2022.0514
基金项目: 重庆市研究生科研创新项目(CYS295)
详细信息
    作者简介:

    文凯:男,(1972-),博士,正高级工程师,硕士生导师.主要从事大数据、计算机视觉和移动通信等方面的研究

    薛晓:男,(1996-),硕士研究生.主要研究领域为图像处理

    何如瑾:女,(1998-),硕士研究生.主要研究领域为视频异常检测

    通讯作者:

    女,(1997-),硕士研究生.主要研究领域为图像处理. E-mail:1052443623@qq.com

  • 中图分类号: TP183

Image denoising method based on edge feature fusion network

  • 摘要:

    目前大多数图像去噪算法在去除噪声的同时,通常会丢失图像的边缘细节信息. 针对这一问题,提出了一种基于边缘特征融合的图像去噪方法. 首先,通过基于Canny算子的边缘提取网络提取图像的边缘信息,由于Canny算子不需要训练,这在很大程度上缩短了去噪时间;其次,通过基于残差密集连接的初去噪网络来保证训练的稳定性以及避免梯度消失,实现图像的初步去噪;最后,通过基于信道与空间注意力机制的融合网络将提取的边缘信息图像与初步去噪图像充分融合,自适应地给相对重要的边缘信息分配更大的权值,对图像的边缘细节进行增强,以得到具有更多边缘信息的清晰图像. 实验结果表明,在BSD68和Set12数据集上,与常见的DnCNN、BM3D等去噪方法相比,所提出去噪方法的平均PSNR比DnCNN分别高出0.13 dB、0.29 dB,比BM3D分别高出0.76 dB、0.82 dB,在视觉效果上看也保留了更多的图像细节,同时去噪速率也大幅度的提高.

     

  • 图 1  总体网络结构图

    Figure 1.  Overall network structure diagram

    图 2  不同高斯滤波器核的可视化结果

    Figure 2.  Visualization results of different Gaussian filter kernels

    图 3  (a)基本残差单元 (b)本文残差单元

    Figure 3.  (a) Basic residual unit (b) Residual unit

    图 4  通道与空间注意网络(CSAN)

    Figure 4.  Channel and Spatial Attention Network (CSAN)

    图 5  模型训练流程

    Figure 5.  Model training process

    图 6  $ \sigma $=15时Set68数据集中test045图像上不同方法的去噪结果

    Figure 6.  Denoising results of different methods on the test045 image in the Set68 dataset when $ \sigma $=15

    图 7  $ \sigma $=25时Set12数据集中Peppers图像上不同方法的去噪结果

    Figure 7.  Denoising results of different methods on Peppers image in Set12 dataset when $ \sigma $= 25

    图 8  医学图像上不同方法的去噪结果对比($ \sigma $=25)

    Figure 8.  Comparison of denoising results of different methods on medical images ($ \sigma $=25)

    表  1  不同去噪方法在BSD68数据集上平均PSNR/dB

    Table  1.   Average PSNR/dB of different denoising methods on BSD68 dataset

    去噪方法BM3DWNNMTNRDEPLLDnCNNIRCNNProposed
    $ \sigma $=1531.0731.3731.4231.2131.7231.6331.86
    $ \sigma $=2528.5728.8328.9228.6829.2329.1529.34
    $ \sigma $=5025.6225.8725.9725.6726.2326.1926.37
    下载: 导出CSV

    表  2  噪声水平为15时不同去噪方法的PSNR/dB

    Table  2.   PSNR/dB of different denoising methods when the noise level is 15

    图像C.manHousePeppersStarfishMonarchAirplaneParrotLenaBarbaraBoatManCoupleAverage
    BM3D31.9134.9332.6931.1431.8531.0731.3734.2633.1032.1331.9232.1032.37
    WNNM32.1735.1332.9931.8232.7131.3931.6234.2733.6032.2732.1132.1732.70
    EPLL31.8534.1732.6431.1332.1031.1931.4233.9231.3831.9332.0031.9332.14
    DnCNN32.6134.9733.3032.2033.0931.7031.8334.6232.6432.4232.4632.4732.86
    IRCNN32.5534.8933.3132.0232.8231.7031.8434.5332.4332.3432.4032.4032.77
    Proposed32.9235.3333.6132.3233.3231.9632.0434.8232.9232.6832.5832.7133.10
    下载: 导出CSV

    表  3  噪声水平为25不同去噪方法的PSNR/dB

    Table  3.   PSNR/dB of different denoising methods when the noise level is 25

    图像C.manHousePeppersStarfishMonarchAirplaneParrotLenaBarbaraBoatManCoupleAverage
    BM3D29.4532.8530.1628.5629.2528.4228.9332.0730.7129.9029.6129.7129.97
    WNNM29.6433.2230.4229.0329.8428.6929.1532.2431.2430.0329.7629.8230.26
    EPLL29.2632.1730.1728.5129.4128.6128.9531.7328.6129.7429.6629.5330.03
    DnCNN30.1833.0630.8729.4130.2829.1329.4332.4430.0030.2130.1030.1230.43
    IRCNN30.0833.0630.8829.2730.0929.1229.4732.4329.9230.1730.0430.0830.38
    Proposed30.4633.6631.4029.6030.5729.3529.6232.7730.4130.5230.2130.4230.74
    下载: 导出CSV

    表  4  噪声水平为50时不同去噪方法的PSNR/dB

    Table  4.   PSNR/dB of different denoising methods when the noise level is 50

    图像C.manHousePeppersStarfishMonarchAirplaneParrotLenaBarbaraBoatManCoupleAverage
    BM3D26.1329.6926.6825.0425.8225.1025.9029.0527.2226.7826.8126.4626.72
    WNNM26.4530.3326.9525.4426.3225.4226.1429.2527.7926.9726.9426.6427.05
    EPLL26.1029.1226.8025.1225.9425.3125.9528.6824.8326.7426.7926.3026.47
    DnCNN27.0330.0027.3225.7026.7825.8726.4829.3926.2227.2027.2426.9027.18
    IRCNN26.8829.9627.3325.5726.6125.8926.5529.4026.2427.1727.1726.8827.14
    Proposed27.3930.7627.8125.8627.0226.0126.6529.6326.8427.5427.2427.2427.51
    下载: 导出CSV

    表  5  两种测试集中比较方法与基准算法对比

    Table  5.   Comparison of two test set methods and benchmark algorithms

    测试集Set12BSD68
    net-130.5929.32
    net-230.5429.36
    Proposed30.6329.39
    下载: 导出CSV

    表  6  不同去噪方法的运行时间

    Table  6.   The running time for different denoising methods

    方法设备计算量/G耗时/s
    文献[5]CPU-0.590
    文献[9]GPU1.400.024
    文献[12]GPU2.780.050
    ProposedGPU1.180.015
    下载: 导出CSV
  • [1] 李雅芝, 车强. 图像去噪在火焰识别中的应用研究[J]. 消防界(电子版),2022,8(11):67-69. DOI: 10.16859/j.cnki.cn12-9204/tu.2022.11.015.

    LI Y Z, CHE Q. Research on the application of image denoising in flame recognition[J]. Fire Protection (Electronic Edition),2022,8(11):67-69. DOI: 10.16859/j.cnki.cn12-9204/tu.2022.11.015.
    [2] 曾宪华, 李彦澄, 高歌, 等. 基于残差编解码器的通道自适应超声图像去噪方法[J]. 电子与信息学报,2022,44(7):2547-2558. DOI: 10.11999/JEIT210331.

    ZENG X H, LI Y C, GAO G, et al. Channel adaptive ultrasound image denoising method based on residual encoder-decoder networks[J]. Journal of Electronics & Information Technology,2022,44(7):2547-2558. DOI: 10.11999/JEIT210331.
    [3] 刘迪, 贾金露, 赵玉卿, 等. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用,2021,57(7):1-13. DOI: 10.3778/j.issn.1002-8331.2011-0341.

    LIU D, JIA J L, ZHAO Y Q, et al. Overview of image denoising methods based on deep learning[J]. Computer Engineering and Applications,2021,57(7):1-13. DOI: 10.3778/j.issn.1002-8331.2011-0341.
    [4] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing,2007,16(8):2080-2095. DOI: 10.1109/TIP.2007.901238.
    [5] LIN T H, HONG H, WU L H. Improved BM3D for real image denoising[C]//2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). Changsha: IEEE, 2021: 1-5.
    [6] 谭艳丽, 赵永强, 李国琴. 基于编码稀疏表示的船舶航行图像去噪方法[J]. 舰船科学技术,2021,43(6):37-39. DOI: 10.3404/J.ISSN.1672-7649.2021.3A.013.

    TAN Y L, ZHAO Y Q, LI G Q. Research on denoising method of ship navigation image based on coded sparse representation[J]. Ship Science and Technology,2021,43(6):37-39. DOI: 10.3404/J.ISSN.1672-7649.2021.3A.013.
    [7] GU S H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 2862-2869.
    [8] WU J F, LEE X D. An improved WNNM algorithm for image denoising[J]. Journal of Physics:Conference Series, 2019,1237(2):022037. DOI: 10.1088/1742-6596/1237/2/022037.
    [9] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142-3155. DOI: 10.1109/TIP.2017.2662206.
    [10] TIAN C W, XU Y, LI Z Y, et al. Attention-guided CNN for image denoising[J]. Neural Networks,2020,124:117-129. DOI: 10.1016/j.neunet.2019.12.024.
    [11] TIAN C W, XU Y, ZUO W M, et al. Designing and training of a dual CNN for image denoising[J]. Knowledge-Based Systems,2021,226:106949. DOI: 10.1016/j.knosys.2021.106949.
    [12] TIAN C W, XU Y, ZUO W M. Image denoising using deep CNN with batch renormalization[J]. Neural Networks,2020,121:461-473. DOI: 10.1016/j.neunet.2019.08.022.
    [13] 郭恒意, 贾振堂. 结合残差密集块的卷积神经网络图像去噪方法[J]. 计算机工程与设计,2020,41(7):1998-2003. DOI: 10.16208/j.issn1000-7024.2020.07.031.

    GUO H Y, JIA Z T. Convolutional neural network image denoising method combined with residual dense block[J]. Computer Engineering and Design,2020,41(7):1998-2003. DOI: 10.16208/j.issn1000-7024.2020.07.031.
    [14] ZHANG K, ZUO W M, GU S H, et al. Learning deep CNN denoiser prior for image restoration[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2808-2817.
    [15] CHEN Y J, POCK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1256-1272. DOI: 10.1109/TPAMI.2016.2596743.
    [16] 王润. 图像边缘检测算子的适用场景研究[J]. 电脑知识与技术,2019,15(13):211-214. DOI: 10.14004/j.cnki.ckt.2019.1530.

    WANG R. Research on the applicable scenarios of image edge detection operators[J]. Computer Knowledge and Technology,2019,15(13):211-214. DOI: 10.14004/j.cnki.ckt.2019.1530.
    [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-10-22

目录

    /

    返回文章
    返回