Analysis and design of a SiP computer module for aerospace microsystem
-
摘要:
针对航天器用元器件高密度、高性能、小型化的特点,设计了一种应用于卫星及空间站平台的宇航微系统SiP(System-in-Package)计算机模块. SiP模块设计需解决信号干扰、供电系统不稳定以及散热性能差等问题,所以本文在SiP模块的封装、布局、层叠、布线设计方面,分别通过使用高热导率封装材料、加强散热性的封装形式以及对芯片采用上下腔布局的方式增强系统的散热能力,并采用低串扰设计、低阻抗设计提升系统中信号和电源的稳定性. 通过仿真校验,该模块在125 ℃的条件下,实际工作温度仅上升25.3 ℃;最复杂的信号线之间的串扰低至−37.57 dB;各电源域的直流压降、电流密度以及阻抗参数值均优于参考指标.
-
关键词:
- 系统级封装(SiP) /
- 陶瓷封装 /
- 信号完整性(SI) /
- 电源完整性(PI) /
- 热分析
Abstract:Aiming at the characteristics of high density, high performance and miniaturization of components used in spacecraft, a computer module of aerospace micro system SiP applied to satellite and space station platform is designed in this paper. The design of SiP module needs to solve the problems such as signal interference, unstable power supply system and poor heat dissipation performance. Therefore, in terms of packaging, layout, lamination and wiring design of SiP module, this paper enhances the heat dissipation capacity of the system by using high thermal conductivity packaging materials, enhancing heat dissipation packaging forms and adopting upper and lower cavity layout for chips, and adopts low crosstalk design Low impedance design improves the stability of signal and power supply in the system. Through simulation and verification, the actual working temperature of the module only increases by 25.3℃ under the condition of 125℃; the crosstalk between the most complex signal lines is as low as −37.57 dB; the DC voltage drop, current density and impedance parameters of each power domain are better than the reference indexes.
-
Key words:
- System-in-Package /
- ceramic packaging /
- Signal Integrity /
- Power Integrity /
- thermal analysis
-
表 1 1.2 V电源网络阻抗分析结果
Table 1. 1.2 V impedance analysis results
VCC_1.2V 实际最大阻抗 目标阻抗 SoC 0.223ohm@53 MHz 0.23 ohm ASIC 0.139ohm@50 MHz 6 ohm 表 2 3.3 V电源网络阻抗分析结果
Table 2. 3.3 V impedance analysis results
VCC_3.3V 实际最大阻抗 目标阻抗 SoC 0.228ohm@100 MHz 1.1 ohm FLASH 1.314ohm@100 MHz 11 ohm SRAM 0.279ohm@100 MHz 1.65 ohm ASIC 0.124ohm@100 MHz 2.2 ohm -
[1] 朱晓枭, 周瑜, 刘云飞, 等. 微系统技术发展现状及趋势[J]. 电声技术,2021,45(7):21-29. DOI: 10.16311/j.audioe.2021.07.006.ZHU X X, ZHOU Y, LIU Y F, et al. Development status and trends of microelectronic information system[J]. Audio Engineering,2021,45(7):21-29. DOI: 10.16311/j.audioe.2021.07.006. [2] SUN L G, CHEN Y C, SUN K Q. System integration using silicon-based integrated passive device technology[C]//Proceedings of 2012 IEEE International Symposium on Radio-Frequency Integration Technology. Singapore: IEEE, 2012: 98-100. [3] 田德文, 孙昱祖, 宋青林. 系统级封装的应用、关键技术与产业发展趋势研究[J]. 中国集成电路,2021,30(4):20-35. DOI: 10.3969/j.issn.1681-5289.2021.04.004.TIAN D W, SUN Y Z, SONG Q L. Research on SiP applications, key technologies and industry development trend[J]. China Integrated Circuit,2021,30(4):20-35. DOI: 10.3969/j.issn.1681-5289.2021.04.004. [4] 李悦. 数字处理器SiP封装工艺设计[J]. 电子工艺技术,2015,36(2):86-88. DOI: 10.14176/j.issn.1001-3474.2015.02.007.LI Y. Technology design of system in package of digital processor module[J]. Electronics Process Technology,2015,36(2):86-88. DOI: 10.14176/j.issn.1001-3474.2015.02.007. [5] 高兰志, 谭超, 伍攀峰, 等. 基于SiP封装技术的宇航计算机研究与设计[C]//徐炜遐. 第二十一届计算机工程与工艺年会暨第七届微处理器技术论坛论文集. 长沙: 湖南科学技术出版社, 2017: 29-35. [6] 过方舟, 徐锐敏. 系统级封装关键技术研究进展[J]. 微波学报,2014,30(S1):588-593. DOI: 10.14183/j.cnki.1005-6122.2014.s1.167.GUO F Z, XU R M. Research of key technology in system in package[J]. Journal of Microwaves,2014,30(S1):588-593. DOI: 10.14183/j.cnki.1005-6122.2014.s1.167. [7] 李扬. SiP系统级封装设计仿真技术[J]. 电子技术应用,2017,43(7):47-50. DOI: 10.16157/j.issn.0258-7998.2017.07.012.LI Y. SiP-system in package design and simulation technology[J]. Application of Electronic Technique,2017,43(7):47-50. DOI: 10.16157/j.issn.0258-7998.2017.07.012. [8] 张小龙, 龚科, 李文琛, 等. 宇航用系统级封装产品可靠性设计综述[J]. 质量与可靠性,2019(6):17-21.ZHANG X L, GONG K, LI W C, et al. A review of reliability design for aerospace system in package products[J]. Quality and Reliability,2019(6):17-21. [9] 楚要钦, 张国强, 施辰光, 等. 一种小型高集成度SiP模块设计[J]. 航空计算技术,2020,50(1):84-87. DOI: 10.3969/j.issn.1671-654X.2020.01.020.CHU Y Q, ZHANG G Q, SHI C G, et al. Design of a small high integration SiP module[J]. Aeronautical Computing Technique,2020,50(1):84-87. DOI: 10.3969/j.issn.1671-654X.2020.01.020. [10] 刘培生, 黄金鑫, 卢颖, 等. 晶圆级封装的优化散热分析[J]. 电子元件与材料,2015,34(1):22-25. DOI: 10.14106/j.cnki.1001-2028.2015.01.005.LIU P S, HUANG J X, LU Y, et al. Optimizing thermal analysis of wafer level packaging[J]. Electronic Components and Materials,2015,34(1):22-25. DOI: 10.14106/j.cnki.1001-2028.2015.01.005. [11] KIM S K, OH D S, HWANG S, et al. Electrical and thermal co-analysis of thermally efficient sip for high performance applications[C]//Proceedings of the 2019 Electrical Design of Advanced Packaging and Systems. Kaohsiung, China: IEEE, 2019: 1-3. [12] 张荣臻, 高娜燕, 朱媛, 等. 基于信号/电源完整性的3D-SiP陶瓷封装设计[J]. 电子与封装,2017,17(1):1-5. DOI: 10.16257/j.cnki.1681-1070.2017.0001.ZHANG R Z, GAO N Y, ZHU Y, et al. A design of 3D-SiP ceramic package based on signal/power integrity[J]. Electronics & Packaging,2017,17(1):1-5. DOI: 10.16257/j.cnki.1681-1070.2017.0001. [13] OREKHOV E, SMOLENSKIY A, POPOV B. Signal integrity analysis and peripheral component interconnect express backplane link compliance assessment[J]. Engineering Reports,2022,4(2):e12453. DOI: 10.1002/eng2.12453. [14] 白利娟, 郑奇, 何慧敏, 等. 电力高端控制芯片封装协同设计、仿真与验证[J]. 半导体技术,2021,46(10):795-800. DOI: 10.13290/j.cnki.bdtjs.2021.10.010.BAI L J, ZHENG Q, HE H M, et al. Collaborative design, simulation and verification for power high-end control chip package[J]. Semiconductor Technology,2021,46(10):795-800. DOI: 10.13290/j.cnki.bdtjs.2021.10.010. [15] 王斌. 10G小型化热插拔光收发模块高速电路设计与研究[D]. 武汉: 武汉理工大学, 2008.WANG B. Study and design of hign-speed circuit for 10-gigabit small form-factor pluggable transceiver[D]. Wuhan: Wuhan University of Technology, 2008. [16] 吕强, 尤明懿, 陈贺贤, 等. CCGA封装特性及其在航天产品中的应用[J]. 电子工艺技术,2014,35(4):222-226. DOI: 10.14176/j.issn.1001-3474.2014.04.011.LV Q, YOU M Y, CHEN H X, et al. CCGA package characteristic and it’s applications for space products[J]. Electronics Process Technology,2014,35(4):222-226. DOI: 10.14176/j.issn.1001-3474.2014.04.011. [17] 夏卓杰, 张亮, 熊明月, 等. 有限元数值模拟在BGA/QFP/CCGA器件焊点可靠性研究中的应用[J]. 电子与封装,2020,20(2):020101. DOI: 10.16257/j.cnki.1681-1070.2020.0201.XIA Z J, ZHANG L, XIONG M Y, et al. Application of finite element numerical simulation in the reliability study of lead-free solder joints in BGA/QFP/CCGA devices[J]. Electronics & Packaging,2020,20(2):020101. DOI: 10.16257/j.cnki.1681-1070.2020.0201. [18] BEYENE W, JUNEJA N, HAHM Y C, et al. Signal and power integrity analysis of high-speed links with silicon interposer[C]//Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference. Orlando: IEEE, 2017: 1708-1715. [19] SWAMINATHAN M, ENGIN A E. 芯片及系统的电源完整性建模与设计[M]. 李玉山, 张木水, 译. 北京: 电子工业出版社, 2009: 13-14.SWAMINATHAN M, ENGIN A E. Power integrity modeling and design for semiconductors and systems[M]. LI Y S, ZHANG M S, trans. Beijing: Publishing House of Electronics Industry, 2009: 13-14. [20] WU P, LIU F M, LI J, et al. Design and implementation of a rigid-flex RF front-end system-in-package[J]. Microsystem Technologies,2017,23(10):4579-4589. DOI: 10.1007/s00542-016-3141-7. [21] 陈章进, 王文磊, 季渊, 等. 传输线中高速信号反射建模分析与优化[J]. 上海大学学报(自然科学版),2021,27(3):503-513. DOI: 10.12066/j.issn.1007-2861.2171.CHEN Z J, WANG W L, JI Y, et al. Modelling analysis and optimisation of high-speed signal reflection in transmission lines[J]. Journal of Shanghai University (Natural Science Edition),2021,27(3):503-513. DOI: 10.12066/j.issn.1007-2861.2171. -