Research on state discrete time model of buck converter and its limit voltage response control strategy
-
摘要:
为了提高开关电源变换器的建模精度和控制性能,提出了一种状态切换离散时间模型(State Switching Discrete time Model,SSDM).该模型在建模时考虑的是每个开关周期内的状态,而不是变换器的平均状态,故在高频下其精度比传统的状态平均模型更高. 基于开关持续时间的全微分方程,精确计算一个周期内的电感电流和输出电压,从而推导出SSDM. 此外,通过SSDM推导出极限电压响应(Limiting Voltage Response,LVR)控制策略.该策略通过电压预测计算出合适的占空比,以在最小开关周期内将输出电压调节为参考值. 通过这种策略,变换器不仅实现了非常快的负载/线路瞬态响应和参考跟踪速度,而且在偏差电感下表现出很高的稳定性. 最后,通过频率响应分析和实验验证了SSDM的准确性和系统的稳定性. 实验结果表明,在不同工况下,LVR控制策略下的输出电压瞬态响应时间相比传统控制策略下的输出电压瞬态响应时间缩短了70%以上;当电感值偏离23%时,在LVR控制策略下的输出电压仍然保持稳定.
Abstract:In order to improve the modeling accuracy and control performance of switching power converters, a state-switching discrete time model (SSDM) is proposed. The model considers the state of each switching period instead of the average state of the converter. Therefore, its accuracy is higher than that of the traditional state average model at high frequency. Based on the full differential equation of the switching duration, the inductor current and the output voltage in a cycle are accurately calculated, and the SSDM is derived. In addition, the limiting voltage response (LVR) control strategy is deduced by SSDM. The LVR control strategy calculates the appropriate duty cycle by voltage prediction to adjust the output voltage to the reference value in the minimum switching period. With this strategy, the converter not only achieves very fast load/line transient response and reference tracking speed, but also exhibits high stability under deviated inductance. Finally, the accuracy of the proposed strategy and the stability of the system are verified by frequency response analysis and experiments. The experimental results show that the transient response time of the output voltage under the LVR control strategy is more than 70% shorter than that under the traditional control strategy under different working conditions. When the inductance value deviates by 23%, the output voltage remains stable under the LVR control strategy.
-
Key words:
- buck /
- DC-DC /
- discrete-time model /
- limit response control
-
表 1 式(4)中的变量
Table 1. Variables in Equation (4)
$ {a_{11}} $ $ {e^{\alpha T}}[cos(\beta T) - \alpha sin(\beta T)/\beta ] $ $ {a_{12}} $ $ - {e^{\alpha T}}sin(\beta T)/(L\beta ) $ $ {a_{21}} $ $ {e^{\alpha T}}sin(\beta T)/(\beta C) $ $ {a_{22}} $ $ {e^{\alpha T}}[\alpha sin(\beta T)/\beta + cos(\beta T)] $ $ {b_1} $ $ {e^{\alpha T}}\{ - cos(\beta T)/R + \alpha sin(\beta T)/(R\beta ) + sin(\beta T)/(L\beta )\} $ $ {b_2} $ $ {e^{\alpha T}}\{ \alpha sin(\beta T)/\beta - cos(\beta T)\} $ 表 2 buck变换器的规格
Table 2. Specifications of the buck converter
L/µH C/µF R/Ω vout/V vin/V T/µs 47 20 5 5 12 10 -
[1] 王士元, 吴芝芳. 最少拍无纹波数字控制器设计[J]. 微电子学与计算机,1993(10):12-15. DOI: 10.19304/j.cnki.issn1000-7180.1993.10.004.WANG S Y, WU Z F. A digital controller design using DEAD-BEAT control method[J]. Microelectronics & Computer,1993(10):12-15. DOI: 10.19304/j.cnki.issn1000-7180.1993.10.004. [2] 闵闰. DC-DC变换器中电流观测器及先进数字控制策略研究[D]. 武汉: 华中科技大学, 2016.MIN R. Study of current observer and advanced digital control strategies for DC-DC converter[D]. Wuhan: Huazhong University of Science and Technology, 2016. [3] 薛露. 数字控制Buck变换器关键模块的设计和研究[D]. 成都: 电子科技大学, 2022.XUE L. Design and research of key module of digital control Buck converter[D]. Chengdu: University of Electronic Science and Technology of China, 2022. [4] 吕典. 临界导通模式数字控制DC-DC变换器关键技术研究[D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.000264.LYU D. Study of key technologies of digitally controlled DC-DC converters in boundary conduction mode[D]. Wuhan: Huazhong University of Science and Technology, 2021. DOI: 10.27157/d.cnki.Ghzku.2021.000264. [5] 张文佳, 邢艳军, 朱立颖, 等. Boost变换器BCM电流自恢复及数字预测纹波控制电路设计[J]. 微电子学与计算机,2022,39(7):101-107. DOI: 10.19304/J.ISSN1000-7180.2021.1258.ZHANG W J, XING Y J, ZHU L Y, et al. BCM current self-recovery and digital predictive ripple control circuit for boost converter[J]. Microelectronics & Computer,2022,39(7):101-107. DOI: 10.19304/J.ISSN1000-7180.2021.1258. [6] 张慧丽. 基于数字预测电流模式控制的DAB-DC/DC变换器[D]. 合肥: 合肥工业大学, 2018.ZHANG H L. The DAB-DC/DC converter based on digital predictive current mode control[D]. Hefei: Hefei University of Technology, 2018. [7] 崔向宇. 基于无差拍电流预测控制的BLDCM离散电流控制策略研究[D]. 天津: 河北工业大学, 2015.CUI X Y. The research of discrete current control for BLDCM based on no beat current predictive control[D]. Tianjin: Hebei University of Technology, 2015. [8] 柳志飞. 预测控制在电压型PWM整流器中的研究与应用[D]. 广州: 华南理工大学, 2017.LIU Z F. Research and application of predictive control in voltage source PWM rectifier[D]. Guangzhou: South China University of Technology, 2017. [9] CUOGHI S, MANDRIOLI R, NTOGRAMATZIDIS L, et al. Multileg interleaved buck converter for EV charging: discrete-time model and direct control design[J]. Energies,2020,13(2):466. DOI: 10.3390/en13020466. [10] MIN R, LYU D, CHENG S, et al. Linearized discrete charge balance control with simplified algorithm for DCM buck converter[J]. Energies,2019,12(16):3177. DOI: 10.3390/en12163177. [11] 张世敏, 佃松宜, 文雪峰. 基于离散时间模型的隔离Cuk PFC控制[J]. 电力电子技术,2015,49(5):84-86. DOI: 10.3969/j.issn.1000-100X.2015.05.025.ZHANG S M, DIAN S Y, WEN X F. Control based on discrete-time model for isolated Cuk power factor correction[J]. Power Electronics,2015,49(5):84-86. DOI: 10.3969/j.issn.1000-100X.2015.05.025. [12] 蒋小平, 魏立彬, 彭朝阳, 等. 基于广义状态平均法的双有源全桥变换器建模[J]. 电子技术应用,2015,41(7):132-135. DOI: 10.16157/j.issn.0258-7998.2015.07.037.JIANG X P, WEI L B, PENG C Y, et al. Modeling of the dual-active bridge DC-DC converters based on generalized state averaging[J]. Application of Electronic Technique,2015,41(7):132-135. DOI: 10.16157/j.issn.0258-7998.2015.07.037. [13] 申科, 汪万兴, 赵丹. 三有源桥DC-DC变换器广义状态空间平均模型及控制策略研究[J/OL]. 电源学报. [2022-09-30]. http://kns.cnki.net/kcms/detail/12.1420.tm.20220228.1741.004.html.SHEN K, WANG W X, ZHAO D. Research on generalized state space average model and control strategy of triple active bridge DC-DC converter[J/OL]. Journal of Power Supply. [2022-09-30]. http://kns.cnki.net/kcms/detail/12.1420.tm.20220228.1741.004.html. [14] KARAMANAKOS P, GEYER T, MANIAS S. Direct voltage control of DC-DC boost converters using enumeration-based model predictive control[J]. IEEE Transactions on Power Electronics,2014,29(2):968-978. DOI: 10.1109/TPEL.2013.2256370. [15] MAKSIMOVIC D, ZANE R. Small-signal discrete-time modeling of digitally controlled PWM converters[J]. IEEE Transactions on Power Electronics,2007,22(6):2552-2556. DOI: 10.1109/TPEL.2007.909776. -