• 北大核心期刊(《中文核心期刊要目总览》2017版)
  • 中国科技核心期刊(中国科技论文统计源期刊)
  • JST 日本科学技术振兴机构数据库(日)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv4的轻量级目标检测算法研究

程书帅 王霄 李伟 杨靖 覃涛

程书帅,王霄,李伟,等.基于改进YOLOv4的轻量级目标检测算法研究[J]. 微电子学与计算机,2023,40(6):1-8 doi: 10.19304/J.ISSN1000-7180.2022.0447
引用本文: 程书帅,王霄,李伟,等.基于改进YOLOv4的轻量级目标检测算法研究[J]. 微电子学与计算机,2023,40(6):1-8 doi: 10.19304/J.ISSN1000-7180.2022.0447
CHENG S S,WANG X,LI W,et al. Research on lightweight target detection algorithm based on improved YOLOv4[J]. Microelectronics & Computer,2023,40(6):1-8 doi: 10.19304/J.ISSN1000-7180.2022.0447
Citation: CHENG S S,WANG X,LI W,et al. Research on lightweight target detection algorithm based on improved YOLOv4[J]. Microelectronics & Computer,2023,40(6):1-8 doi: 10.19304/J.ISSN1000-7180.2022.0447

基于改进YOLOv4的轻量级目标检测算法研究

doi: 10.19304/J.ISSN1000-7180.2022.0447
基金项目: 国家自然科学基金(61861007,61640014);贵州省科技支撑计划(黔科合支撑[2022]一般017,[2019]2152).
详细信息
    作者简介:

    程书帅:男,(1997-),硕士研究生. 研究方向为深度学习、医疗图像识别、目标检测

    通讯作者:

    男,(1985-),博士,副教授. 研究方向为深度学习、自组网信息融合与可信计算、控制理论与控制工程、物联网协议与计算、网络信息安全.E-mail:xwang9@gzu.edu.cn

  • 中图分类号: TP391.4

Research on lightweight target detection algorithm based on improved YOLOv4

  • 摘要:

    针对YOLOv4目标检测算法在一些应用场景的参数多、网络复杂、精度低等问题,提出一种改进的轻量级的目标检测算法GD-YOLO. 首先,通过使用轻量级网络GhostNet替换掉YOLOv4的主干特征提取网络CSPDarknet,GhostNet网络极大降低了算法的参数量及计算量,使得算法更加轻量化;其次,提出双重注意力机制(DATM),其不仅增强模型对空间和通道上的特征进行加强,而且其结构参数量小,使用在对主干网络提取出来的三个有效特征层添加双重注意力机制,让模型对特征提取更加有效;最后,新增ACON激活函数代替原有的GhostNet网络中的ReLU激活函数,进一步提高算法检测精度. 在VOC2007+2012数据集上的实验结果表明,GD-YOLO算法的平均准确率(mAP)达到84.28%,与YOLOv4算法相比提升了4个百分点,与YOLOv5算法相比低了大约1个百分点;从模型参数量方面,与YOLOv4算法相比减少了11 M,与YOLOv5相比减少3 M. 所提GD-YOLO算法相对于YOLOv4不仅减少了模型参数量,而且也保存了较高的平均准确率,表明该算法是更具有轻量化及高准确率的.

     

  • 图 1  YOLOv4网络结构

    Figure 1.  YOLOV4 network structure

    图 2  Ghost模块结构图

    Figure 2.  Ghost module structure diagram

    图 3  DATM结构示意图

    Figure 3.  DATM structure schematic diagram

    图 4  ReLU与ACON激活函数的不同激活方式

    Figure 4.  Different activation methods of ReLU and ACON activation functions

    图 5  GD-YOLOv4网络结构

    Figure 5.  GD-YOLov4 network structure

    图 6  不同网络下对cat类别的P-R曲线

    Figure 6.  P-R curve of the Cat category under different networks

    图 7  GD-YOLO检测结果

    Figure 7.  Model test results

    表  1  各种注意力机制与DATM在YOLOv4下的对比

    Table  1.   Effect comparison of different attention structures and DATM

    算法mAP/%
    YOLOv479.66
    YOLOv4+SENet82.18
    YOLOv4+ECA-Net82.52
    YOLOv4+CBAM82.71
    YOLOv4+DATM83.23
    下载: 导出CSV

    表  2  消融实验

    Table  2.   Ablation experiment

    算法mAP/%参数量FPS
    YOLOv479.6623.9 M17
    YOLOv4+GhostNet80.2811.3 M23
    YOLOv4+DATM83.2324.0 M27
    YOLOv4+GhostNet+ACON80.7111.3 M23
    YOLOv4+GhostNet+DATM83.9811.4 M27
    GD-YOLO84.2811.4 M27
    下载: 导出CSV

    表  3  各算法在VOC2007+2012数据集上的测试效果

    Table  3.   The test effect of each algorithm on the VOC2007+2012 dataset

    算法主干网络mAP/%参数量FPS
    YOLO v4Vgg79.6623.9 M17
    Mobilenet_v180.8212.6 M44
    Mobilenet_v281.0310.8 M35
    Mobilenet_v380.0111.7 M31
    DenseNet12184.0216.4 M19
    ResNet5082.4133.6 M27
    YOLOv4CSPDarknet80.2822.4 M23
    YOLOv5CSPDarknet85.0814.2 M30
    本文方法GhostNet84.2811.4 M27
    下载: 导出CSV
  • [1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(1):142-158. DOI: 10.1109/TPAMI.2015.2437384.
    [2] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
    [3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
    [4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
    [5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
    [6] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
    [7] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
    [8] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: Scaling cross stage partial network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13024-13033.
    [9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
    [10] DENG J, XUAN X J, WANG W F, et al. A review of research on object detection based on deep learning[J]. Journal of Physics: Conference Series,2020,1684:012028. DOI: 10.1088/1742-6596/1684/1/012028.
    [11] LIU J, WANG X W. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network[J]. Frontiers in Plant Science,2020,11:898. DOI: 10.3389/fpls.2020.00898.
    [12] WAN J X, JIAN D F, YU D Z. Research on the method of grass mouse hole target detection based on deep learning[J]. Journal of Physics: Conference Series, 2021, 1952: 022061.
    [13] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J]. arXiv preprint arXiv: 1602.07360, 2016.
    [14] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017.
    [15] HUANG R, PEDOEEM J, CHEN C X. YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers[C]//2018 IEEE International Conference on Big Data (Big Data). Seattle: IEEE, 2018: 2503-2510. DOI: 10.1109/BigData.2018.8621865.
    [16] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: JMLR. org, 2015: 448-456.
    [17] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
    [18] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
    [19] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324.
    [20] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. DOI: 10.1109/TPAMI.2015.2389824.
    [21] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
    [22] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586.
    [23] MA N N, ZHANG X Y, LIU M, et al. Activate or not: learning customized activation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 8028-8038.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  17
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-08-24

目录

    /

    返回文章
    返回