A new logic control method of the high precision current/frequency converter
-
摘要:
电流/频率转换器主要是对加速度计输出电流进行高精度测量,典型展宽复位电荷平衡式电流/频率转换器的逻辑控制方法对精度影响较大. 针对典型逻辑控制方法的不足,提出了一种新的逻辑控制方法. 电路积分器输出通过一级D触发器作为比较电路实现模拟数字转换输出,然后通过二级D触发器和与门形成的自锁电路产生计数器启动触发脉冲,最后通过计数器电路计数形成开关控制逻辑. 新方法避免了典型方法中对积分时间的约束,减小了大电流输入和小电流输入时积分器输出波形的平均值差异,从而有效提高了电路精度. 对同一个硬件电路通过编写不同的CPLD算法程序进行性能对比测试,结果表明新的方法比典型的方法使电路精度得到明显提升.
Abstract:The current/frequency converter is mainly used to measure the output current of accelerometers,the logic control method of typical extended width reset charge balance current /frequency converter has a great influence on the accuracy. To overcome the control logic shortage of typical logic control method, a new logic control method is given. The integrator output of the circuit realizes the analog-to-digital conversion output through the primary D trigger as the comparison circuit,then the counter start trigger pulse is generated by the self-locking circuit formed by the second D trigger and the and gate, finally the switch control logic is formed by counting of the counter circuit. The new method avoids the constraint of integration time in typical method ,and reduces the difference of the average value of the integrator output waveform between high current input and low current input, thus the circuit accuracy is effectively improved. The performance of the same hardware circuit is tested by writing different CPLD algorithmic programs, the results show that the new method can significantly improve the circuit accuracy compared with the typical method.
-
Key words:
- charge balance /
- current/frequency /
- logic control /
- integration time
-
表 1 产品测试数据
Table 1. The testing data of the product
输入电流/ mA 典型方法输出频率/Hz 新的方法输出频率/Hz 1 5192.2 5192.31 5 25960.6 25961.89 10 51921.6 51923.97 15 77882.5 77885.57 25 129812.4 129811.16 35 181738.8 181734.14 42 218084.9 218080.42 非线性度 3.6×10−5 7.9×10−6 -
[1] 朱从益. 高速高精度数据转换器关键技术研究[D]. 南京: 南京大学, 2019.ZHU C Y. Research on the key techniques of high-speed and high-resolution data converters[D]. Nanjing: Nanjing University, 2019. [2] 沈璐. 中国59型、GTS1型探空仪的发展研究[D]. 南京: 南京信息工程大学, 2020.SHEN L. Research on development of China type 59 and GTS1 radiosondes[D]. Nanjing: Nanjing University of Information Engineering, 2020. [3] SONG T X, LI K, WU Q, et al. An improved self-calibration method with consideration of inner lever-arm effects for a dual-axis rotational inertial navigation system[J]. Measurement Science and Technology,2020,31(7):074001. DOI: 10.1088/1361-6501/ab7612. [4] 程远超, 黄伟, 赵新强, 等. 基于FPGA的大比例系数高精度I/F电路设计[J]. 导航与控制,2018,17(2):59-66. DOI: 10.3969/j.issn.1674-5558.2018.02.009.CHENG Y C, HUANG W, ZHAO X Q, et al. Design of large proportional cofficient and high precision I/F convert circuit based on FPGA[J]. Navigation and Control,2018,17(2):59-66. DOI: 10.3969/j.issn.1674-5558.2018.02.009. [5] 李昕雨, 张含, 余鑫, 等. 基于电荷平衡原理的微弱电流测量研究[J]. 仪表技术与传感器,2022(7):79-84. DOI: 10.3969/j.issn.1002-1841.2022.07.016.LI X Y, ZHANG H, YU X, et al. Study on weak current measurement based on charge balance principle[J]. Instrument Technique and Sensor,2022(7):79-84. DOI: 10.3969/j.issn.1002-1841.2022.07.016. [6] 吴伟伟. 大量程精密I/F转换电路研究[D]. 北京: 中国运载火箭技术研究院, 2018.WU W W. The research on wide-measuring-range and precise I/F conversion circuit[D]. Beijing: China Academy of Launch Vehicle Technology, 2018. [7] 强冰, 王云, 黄征, 等. 基于FPGA的高精度I/F转换电路的设计与实现[J]. 微电子学与计算机,2020,37(11):73-78. DOI: 10.19304/j.cnki.issn1000-7180.2020.11.013.QIANG B, WANG Y, HUANG Z, et al. Design and implementation of high precision I/F convert circuit based on FPGA[J]. Microelectronics & Computer,2020,37(11):73-78. DOI: 10.19304/j.cnki.issn1000-7180.2020.11.013. [8] GHAFFARI R, ROGERS J A, RAY T R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis[J]. Sensors and Actuators B:Chemical,2021,332:129447. DOI: 10.1016/j.snb.2021.129447. [9] FAN Y Q, SHAO J P, SUN G T, et al. Active disturbance rejection control design using the optimization algorithm for a hydraulic quadruped robot[J]. Computational Intelligence and Neuroscience, 2021, 2021: 6683584. [10] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks optimization: algorithm and applications[J]. Future Generation Computer Systems,2019,97:849-872. DOI: 10.1016/j.future.2019.02.028. [11] 董建树, 孙宏超, 王惠, 等. 一种高分辨率积分输出的A/D转换电路的设计[J]. 导航定位与授时,2018,5(1):93-99. DOI: 10.19306/j.cnki.2095-8110.2018.01.016.DONG J S, SUN H C C, WANG H, et al. The design of A/D converter circuit with high resolution integral output[J]. Navigation Positioning and Timing,2018,5(1):93-99. DOI: 10.19306/j.cnki.2095-8110.2018.01.016. [12] AMIRI GOLILARZ N, GAO H, KUMAR R, et al. Adaptive wavelet based MRI brain image de-noising[J]. Frontiers in Neuroscience,2020,14:728. DOI: 10.3389/fnins.2020.00728. [13] 赵桂玲, 葛礼赞, 郭泉荣, 等. 捷联惯导加速度计内杆臂误差分析与补偿[J]. 传感技术学报,2020,33(12):1773-1779. DOI: 10.3969/j.issn.1004-1699.2020.12.014.ZHAO G L, GE L Z, GUO Q R, et al. Analysis and compensation of inner lever arm for strapdown inertial navigation accelerometer[J]. Chinese Journal of Sensors and Actuators,2020,33(12):1773-1779. DOI: 10.3969/j.issn.1004-1699.2020.12.014. [14] 黄武扬, 吴一, 黎坤. 基于I/F+A/D的高分辨率模数转换电路[J]. 仪表技术与传感器,2020(1):108-111. DOI: 10.3969/j.issn.1002-1841.2020.01.025.HUANG W Y, WU Y, LI K. High resolution analog-to-digital conversion circuit based on I/F+A/D[J]. Instrument Technique and Sensor,2020(1):108-111. DOI: 10.3969/j.issn.1002-1841.2020.01.025. [15] Xilinx. Spartan-3 Generation Configuration User Guide[DB/OL]. San Jose, California, U. S. A: Delaware: Xilinx User Guide, 2015. (2015-01-27). https://www.sekorm.com/doc/137236.html. [16] 佘乾顺. 微弱信号数字化读出方法及电路研究[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2019.YU Q S. Study on digital readout method and circuit for weak signal[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2019. [17] MOHAMED M A, ABDULLAH H M, AL-SUMAITI A S, et al. Towards energy management negotiation between distributed AC/DC networks[J]. IEEE Access,2020,8:215438-215456. DOI: 10.1109/ACCESS.2020.3040503. -