A real-time identification method for transient fault of intelligent meter circuit
-
摘要:
基于故障信号频率的识别模型由于受到周围磁场等的影响,精度较低,为提高智能电表电路暂态故障信号实时识别的准确性,从故障信号处理的方向出发,基于时域粗检测方法,研究了一种智能电表电路暂态故障实时识别方法. 对智能电表电路故障信号采样,使故障信号按照指定的路线传输,就要增加通道的接收能力,利用小波分析方法,对复杂的电信号进行样本预处理,经过时域检测后的信号被统一进行重新分布,以较为简单的方式进行标记;基于小波熵测度的故障信号融合模型,采用信息熵方法融合分离相似故障信号,确定所有智能电表故障电路信号暂态特征;构建基于小波熵测度的故障信号融合模型,在信号谱上完成信号的筛选与分解,实现智能电表电路暂态故障信号实时识别. 实验结果表明,针对智能电表电路接地短路、两相接地短路、相间短路、三相接地短路四种不同类型的暂态故障,通过该方法识别出的故障电压曲线值与实际的值相差小于0.3 V,具有较高的识别准确性,具备一定的实际应用意义.
Abstract:The identification model based on fault signal frequency has low accuracy due to the influence of surrounding magnetic field. In order to improve the accuracy of real-time identification of transient fault signal of smart meter circuit, from the direction of fault signal processing, a real-time identification method of transient fault of smart meter circuit based on time domain rough detection method is studied. To sample the fault signal of the smart meter circuit and make the fault signal transmit according to the specified route, it is necessary to increase the receiving capacity of the channel. The complex electrical signal is preprocessed by using the wavelet analysis method. The signal after time-domain detection is uniformly redistributed and marked in a relatively simple way; The fault signal fusion model based on wavelet entropy measure adopts the information entropy method to fuse and separate similar fault signals, and determines the transient characteristics of fault circuit signals of all smart meters; A fault signal fusion model based on wavelet entropy measure is constructed to complete the signal screening and decomposition on the signal spectrum, and realize the real-time identification of the transient fault signal of the smart meter circuit. The experimental results show that the difference between the fault voltage curve value identified by this method and the actual value is less than 0.3 V, which has high identification accuracy and certain practical application significance for the four different types of transient faults of the smart meter circuit, i.e. grounding short circuit, two-phase grounding short circuit, phase to phase short circuit and three-phase grounding short circuit.
-
Key words:
- rough detection in time domain /
- smart meter /
- circuit transient fault /
- identification /
- propagation /
- interception
-
表 1 故障类型
Table 1. Fault Type
编号 故障模式 故障发生时间 D1 接地短路 5:00 D2 两相接地短路 7:00 D3 相间短路 11:00 D4 三相接地短路 16:00 -
[1] 高校平, 黄文焘, 邰能灵, 等. 基于暂态电流的MMC-LVDC双极短路故障定位方法[J]. 电力系统自动化,2020,44(17):127-135. DOI: 10.7500/AEPS20200106004.GAO X P, HUANG W T, TAI N L, et al. Transient current based fault location method of pole-to-pole short-circuit for modular multilevel converter low-voltage direct current[J]. Automation of Electric Power Systems,2020,44(17):127-135. DOI: 10.7500/AEPS20200106004. [2] 杨帆, 任伟, 沈煜, 等. 谐振接地配电网电弧接地故障暂态分析方法与辨识[J]. 电力系统及其自动化学报,2021,33(4):23-31. DOI: 10.19635/j.cnki.csu-epsa.000522.YANG F, REN W, SHEN Y, et al. Transient analysis method and identification of arc grounding faults in Petersen coil grounded distribution network[J]. Proceedings of the CSU-EPSA,2021,33(4):23-31. DOI: 10.19635/j.cnki.csu-epsa.000522. [3] 戚振彪, 凌松, 刘文烨, 等. 基于高频测试信号注入的配电网故障节点在线识别方法[J]. 电力系统保护与控制,2020,48(4):110-117. DOI: 10.19783/j.cnki.pspc.190399.QI Z B, LING S, LIU W Y, et al. On-line fault node identification method for distribution network based on high frequency test signal injection[J]. Power System Protection and Control,2020,48(4):110-117. DOI: 10.19783/j.cnki.pspc.190399. [4] 刘婧, 苏良立, 陈昊, 等. 基于智能电能表误差检测的非侵入式电网故障定位及运维调度[J]. 电测与仪表,2021,58(11):164-169. DOI: 10.19753/j.issn1001-1390.2021.11.023.LIU J, SU L L, CHEN H, et al. Non-intrusive fault location and operation scheduling of power grid based on error detection of smart meters[J]. Electrical Measurement & Instrumentation,2021,58(11):164-169. DOI: 10.19753/j.issn1001-1390.2021.11.023. [5] 徐瑞东, 常仲学, 宋国兵, 等. 注入探测信号的直流配电网接地故障识别方法[J]. 电网技术,2021,45(11):4269-4276. DOI: 10.13335/j.1000-3673.pst.2021.1260.XU R D, CHANG Z X, SONG G B, et al. Grounding fault identification method for DC distribution network based on detection signal injection[J]. Power System Technology,2021,45(11):4269-4276. DOI: 10.13335/j.1000-3673.pst.2021.1260. [6] 张坤, 马朝永, 胥永刚, 等. 快速自适应局部均值分解及轴承故障诊断应用[J]. 振动工程学报,2020,33(1):206-212. DOI: 10.16385/j.cnki.issn.1004-4523.2020.01.023.ZHANG K, MA C Y, XU Y G, et al. Fast and adaptive local mean decomposition method and its application in rolling bearing fault diagnosis[J]. Journal of Vibration Engineering,2020,33(1):206-212. DOI: 10.16385/j.cnki.issn.1004-4523.2020.01.023. [7] 孙天雨, 郝新, 薛丽敏, 等. 智能电能表高阻抗故障检测方法研究[J]. 电测与仪表,2021,58(12):184-189. DOI: 10.19753/j.issn1001-1390.2021.12.027.SUN T Y, HAO X, XUE L M, et al. Research on high impedance fault detection method of smart meter[J]. Electrical Measurement & Instrumentation,2021,58(12):184-189. DOI: 10.19753/j.issn1001-1390.2021.12.027. [8] 雷少波, 刘丰硕, 李健, 等. 基于小波框架的智能电能表台区识别技术研究[J]. 电测与仪表,2021,58(10):193-200. DOI: 10.19753/j.issn1001-1390.2021.10.029.LEI S B, LIU F S, LI J, et al. Research on recognition technology of smart electricity meter area based on wavelet frame[J]. Electrical Measurement & Instrumentation,2021,58(10):193-200. DOI: 10.19753/j.issn1001-1390.2021.10.029. [9] 高欣, 纪维佳, 赵兵, 等. 不平衡数据集下基于CVAE-CNN模型的智能电表故障多分类方法[J]. 电网技术,2021,45(8):3052-3060. DOI: 10.13335/j.1000-3673.pst.2020.2016.GAO X, JI W J, ZHAO B, et al. Multi-classification method of smart meter fault types based on CVAE-CNN model under imbalanced dataset[J]. Power System Technology,2021,45(8):3052-3060. DOI: 10.13335/j.1000-3673.pst.2020.2016. [10] 江剑峰, 张垠, 田书欣, 等. 基于云理论的智能电能表故障数据分析[J]. 电力科学与技术学报,2020,35(2):163-169. DOI: 10.19781/j.issn.1673-9140.2020.02.022.JIANG J F, ZHANG Y, TIAN S X, et al. Fault data analysis of smart electricity meter based cloud theory[J]. Journal of Electric Power Science and Technology,2020,35(2):163-169. DOI: 10.19781/j.issn.1673-9140.2020.02.022. [11] 宋福海. 面向智能变电站二次系统测试的电磁暂态仿真方法研究[J]. 电力系统及其自动化学报,2021,33(2):25-31. DOI: 10.19635/j.cnki.csu-epsa.000478.SONG F H. Research on electromagnetic transient simulation method for secondary system test in smart substation[J]. Proceedings of the CSU-EPSA,2021,33(2):25-31. DOI: 10.19635/j.cnki.csu-epsa.000478. [12] 谢超, 李晨曦, 张代润, 等. 基于智能电表量测数据的配网线变关系反向识别[J]. 电力建设,2020,41(11):94-100. DOI: 10.12204/j.issn.1000-7229.2020.11.010.XIE C, LI C X, ZHANG D R, et al. Reverse identification of the relationship of feeder-transformer connectivity in distribution grid applying smart meter measurement data[J]. Electric Power Construction,2020,41(11):94-100. DOI: 10.12204/j.issn.1000-7229.2020.11.010. [13] 宋晓林, 黄璐涵, 贺云隆, 等. 基于智能电能表采集数据的台户关系识别新方法[J]. 电测与仪表,2020,57(23):135-140. DOI: 10.19753/j.issn1001-1390.2020.23.018.SONG X L, HUANG L H, HE Y L, et al. Novel identification method of station-area relationship based on data acquisition by smart meter[J]. Electrical Measurement & Instrumentation,2020,57(23):135-140. DOI: 10.19753/j.issn1001-1390.2020.23.018. [14] 孙仕鑫, 高洁, 王伟, 等. 基于多通道时频域信号的卷积神经网络智能故障诊断技术[J]. 科学技术与工程,2021,21(15):6386-6393. DOI: 10.3969/j.issn.1671-1815.2021.15.039.SUN S X, GAO J, WANG W, et al. Intelligent fault diagnosis technique of convolutional neural networks based on multi-channel time-frequency signals[J]. Science Technology and Engineering,2021,21(15):6386-6393. DOI: 10.3969/j.issn.1671-1815.2021.15.039. [15] 王保帅, 尹家悦, 胡珊珊, 等. 基于层次分析法和群体决策的智能电能表可靠性分配技术研究[J]. 电测与仪表,2021,58(12):169-174. DOI: 10.19753/j.issn1001-1390.2021.12.025.WANG B S, YIN J Y, HU S S, et al. Research on reliability allocation technology of smart meter based on analytic hierarchy process and group decision-making[J]. Electrical Measurement & Instrumentation,2021,58(12):169-174. DOI: 10.19753/j.issn1001-1390.2021.12.025. -