A configuration circuit design for Flash-based FPGA
-
摘要:
为了能够为flash型FPGA中的flash开关单元提供稳定的擦除、编程和读取操作电压,基于0.11
μ m 2P8M flash工艺,设计了一款用于flash型FPGA的配置电路.根据flash cell的操作条件和flash型FPGA的特点设计了层次化的字线电路、带校验功能的位线电路、低纹波的电荷泵电路、多级的电平转换电路、灵活的衬底电压电路以及配置控制电路.该配置电路是执行配置算法流程的基础,为flash型FPGA配置过程中的flash cell提供了高精度和稳定的操作电压,保证了flash cell在擦除和编程后的阈值电压分布的一致性, 使flash型FPGA的性能得以充分发挥.仿真结果表明:擦除时字线的驱动能力为1.2 mA,输出电压-10.5 V,误差小于±0.1 V,建立时间为11.2μ S; 位线驱动能力为1.2 mA,输出电压8.8 V,误差小于±0.1 V,建立时间为7.5μ S。编程时字线的驱动能力为1.2 mA,输出电压9.8 V,误差小于±0.1 V,建立时间为2.3μ S; 位线驱动能力为4.4 mA,输出电压-8.0 V,误差小于±0.1 V,建立时间为2.5μ S.设计满足了flash cell的操作条件,最终实现对350万门flash型FPGA共26 836 992 bits(2 912 bl*9 216 wl)码流的配置.-
关键词:
- Flash型FPGA /
- 配置 /
- 编程 /
- 擦除
Abstract:In order to provide a stable erasing, programming and reading operating voltage for flash switch unit in flash-based FPGA, a configuration circuit for flash-based FPGA was designed based on 0.11
μ m 2P8M flash process. According to the operating conditions of flash cell and the characteristics of flash-based FPGA, the configuration circuit is designed with hierarchical word line circuit, bit line circuit with check function, low ripple charge pump circuit, multi-level level conversion circuit, flexible substrate voltage circuit and configuration control circuit, which is the basis of the implementation of the configuration algorithm flow. It provides high precision and stable operating voltage for flash cell in the process of flash-based FPGA configuration, ensures the consistency of threshold voltage distribution of flash cell after erasure and programming, and gives full play to the performance of flash-based FPGA. The simulation results show that the driving capacity of the word line is 1.2 mA, the output voltage is -10.5 V, the error is less than ±0.1 V, and the establishment time is 11.2μ S. The bit line drive capacity is 1.2 mA, the output voltage is 8.8 V, the error is less than ±0.1 V, and the establishment time is 7.5μ S. In programming, the driving capacity of the word line is 1.2 mA, the output voltage is 9.8V, the error is less than ±0.1 V, and the establishment time is 2.1μ S. The bit line drive capacity is 4.4 mA, the output voltage is -8.0 V, the error is less than ±0.1 V, and the establishment time is 2.3μ S. The design meets the operating conditions of Flash cell, and finally realizes the configuration of 3.5 million flash-based FPGA with 26 836 992 bits (2 912 BL * 9 216 WL) bit streams.-
Key words:
- Flash-based FPGA /
- Configuration /
- Programming /
- Erasing
-
表 1 配置电路的性能
Table 1. Configure circuit performance
性能指标 设计目标 仿真结果 擦除时间/mS 6~10 6~10 每帧数据编程时间/μS 10~15 10~15 FPGA配置时间/Minutes 2.5~3.0 2.5~3.0 字线电压精度/V 擦除时-10.5±0.2编程时9.8±0.2 擦除时-10.5±0.1编程时9.8±0.1 字线驱动能力/mA 1 1.2 字线建立时间/μS 擦除时15编程时3 擦除时11.2编程时2.3 位线(漏)电压精度/V 擦除时8.8±0.2编程时-8.0±0.15 擦除时8.8±0.1编程时-8.0±0.1 位线(漏)驱动能力/mA 擦除时1编程时4 擦除时1.2编程时4.4 位线(漏)建立时间/μS 擦除时10编程时3 擦除时7.5编程时2.5 位线(源)电压精度/V 擦除时8.8±0.2编程时-0.9±0.2 擦除时8.8±0.1编程时-0.9±0.1 位线(源)驱动能/mA 1 1.2 位线(源)建立时间/μS 擦除时10编程时1 擦除时7.5编程时0.3 衬底电压精度/V 擦除时8.8±0.2编程时0 擦除时8.8±0.1编程时0 衬底驱动能力/mA 1 1.2 衬底建立时间/μS 擦除时10编程时1 擦除时7.5编程时0.2 -
[1] PUTNAM A, CAULFIELD A M, CHUNG E S, et al. A reconfigurable fabric for accelerating large-scale datacenter services[C]//Proceedings of the ACM/IEEE 41st International Symposium on Computer Architecture. Minneapolis: IEEE, 2014: 13-24. DOI: 10.1109/ISCA.2014.6853195. [2] 虞亚君, 桑坤, 赵参. 一种基于FPGA的Viterbi译码器的研究与设计[J]. 电子与封装, 2020, 20(1): 010201. DOI: 10.16257/j.cnki.1681-1070.2020.0107.YU Y J, SANG K, ZHAO C. Research and design of Viterbi decoder based on FPGA[J]. Electronics & Packaging, 2020, 20(1): 010201. DOI: 10.16257/j.cnki.1681-1070.2020.0107. [3] 张颖, 毛志明, 陈鑫. 基于静态随机存取存储器型FPGA的测试技术发展[J]. 电子与封装, 2021, 21(1): 010204. DOI: 10.16257/j.cnki.1681-1070.2021.0107.ZHANG Y, MAO Z M, CHEN X. Progress of static random access memory-based FPGA testing[J]. Electronics & Packaging, 2021, 21(1): 010204. DOI: 10.16257/j.cnki.1681-1070.2021.0107. [4] REZGUI S, WANG J J, SUN Y M, et al. New reprogrammable and non-volatile radiation tolerant FPGA: RTA3P[C]//Proceedings of 2008 IEEE Aerospace Conference. Big Sky: IEEE, 2008. DOI: 10.1109/AERO.2008.4526472. [5] Actel Company. ProASIC3 flash family FPGAs[EB/OL]. (2005-11-30). http://www.actel.com/documents/PA3-DS.pdf. [6] AHMED E, ROSE J. The effect of LUT and cluster size on deep-submicron FPGA performance and density[C]//Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays. California: ACM, 2000: 3-12. DOI: 10.1145/329166.329171. [7] CHAN V H, LIU D K Y. An enhanced erase mechanism during channel Fowler-Nordheim tunneling in flash EPROM memory devices[J]. IEEE Electron Device Letters, 1999, 20(3): 140-142. DOI: 10.1109/55.748914. [8] OHNAKADO T, MITSUNAGA K, NUNOSHITA M, et al. Novel electron injection method using band-to-band tunneling induced hot electrons (BBHE) for flash memory with a P-channel cell[C]//Proceedings of 1995 International Electron Devices Meeting. Washington: IEEE, 1993. DOI: 10.1109/IEDM.1995.499196. [9] WANG D C, ZHANG P Z. The technology research of remote automatic detection and fault diagnosis based on JTAG boundary scan[J]. Procedia Engineering, 2010(7): 270-274. DOI: 10.1016/j.proeng.2010.11.043. [10] OHNAKADO T, ONODA H, SAKAMOTO O, et al. Device characteristics of 0.35/spl mu/m P-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming[J]. IEEE Transactions on Electron Devices, 1999, 46(9): 1866-1871. DOI: 10.1109/16.784186. [11] SHUKURI S, AJIKA N, MIHARA M, et al. A 60nm NOR flash memory cell technology utilizing back bias assisted band-to-band tunneling induced hot-electron injection (B4-Flash)[C]//2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers. Honolulu: IEEE, 2006. DOI: 10.1109/VLSIT.2006.1705194. [12] TANZAWA T. A switch-resistance-aware dickson charge pump model for optimizing clock[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2011, 58(6): 336-340. DOI: 10.1109/TCSⅡ.2011.2158166. [13] TANZAWA T. A comprehensive optimization methodology for designing charge pump voltage multipliers[C]//2015 IEEE International Symposium on Circuits and Systems. Lisbon: IEEE, 2015: 1358-1361. DOI: 10.1109/ISCAS.2015.7168894. [14] TANZAWA T. On two-phase switched-capacitor multipliers with minimum circuit area[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(10): 2602-2608. DOI: 10.1109/TCSI.2010.2046958. [15] PALUMBO G, PAPPALARDO D. Charge pump circuits: an overview on design strategies and topologies[J]. IEEE Circuits and Systems Magazine, 2010, 10(1): 31-45. DOI: 10.1109/MCAS.2009.935695. [16] BIAN H W, SUN J T, YANG W Q. Theoretical analysis method for Howland current source design/Citation formats[J]. Journal of Measurement Science and Instrumentation, 2012, 3(3): 287-293. [17] HU J L, SUN J, BAI Y B, et al. A novel 1.03 ppm/℃ wide-temperature-range curvature-compensated Bandgap voltage reference[C]//Proceedings of the IEEE 2nd International Conference on Circuits, System and Simulation (ICCSS). Guangzhou, China: IEEE, 2018. DOI: 10.1109/CIRSYSSIM.2018.8525967. [18] YANG B D, SHIN Y K, LEE J S, et al. An accurate current reference using temperature and process compensation current mirror[C]//2009 IEEE Asian Solid-State Circuits Conference. Taipei, China: IEEE, 2009: 241-244. DOI: 10.1109/ASSCC.2009.5357223. [19] TANZAWA T. NBTI stress relaxation design for scaling high-voltage transistors in NAND flash memories[C]//Proceedings of 2010 IEEE International Memory Workshop. Seoul, Korea (South): IEEE, 2010: 1-2. DOI: 10.1109/IMW.2010.5488411. [20] CAMPARDO G, MICHELONI R. Row decoder for a flash-EEPROM memory device with the possibility of selective erasing of a sub-group of rows of a sector: US, 6122200[P]. 2000-09-19. [21] PARK K T, LEE S C, SEL J S, et al. Scalable wordline shielding scheme using dummy cell beyond 40 nm NAND Flash memory for eliminating abnormal disturb of edge memory cell[J]. Japanese Journal of Applied Physics, 2007, 46(4S): 2188-2192. DOI: 10.1143/JJAP.46.2188. [22] LEE J D, LEE C K, LEE M W, et al. A new programming disturbance phenomenon in NAND flash memory by source/drain hot-electrons generated by GIDL current[C]//Proceedings of the 21st IEEE Non-Volatile Semiconductor Memory Workshop. Monterey: IEEE, 2006: 31-33. DOI: 10.1109/.2006.1629481. [23] CAMPARDO G, MICHELONI R, COMMODARO S. Method and circuit for reading low-supply-voltage nonvolatile memory cells: US, 6128225[P]. 2000-10-03. -