李艳俊,葛耀东,张伟国,等.Camellia算法的量子资源评估[J]. 微电子学与计算机,2023,40(2):37-49. doi: 10.19304/J.ISSN1000-7180.2022.0281
引用本文: 李艳俊,葛耀东,张伟国,等.Camellia算法的量子资源评估[J]. 微电子学与计算机,2023,40(2):37-49. doi: 10.19304/J.ISSN1000-7180.2022.0281
LI Y J,GE Y D,ZHANG W G,et al. Quantum resource evaluation of Camellia algorithm[J]. Microelectronics & Computer,2023,40(2):37-49. doi: 10.19304/J.ISSN1000-7180.2022.0281
Citation: LI Y J,GE Y D,ZHANG W G,et al. Quantum resource evaluation of Camellia algorithm[J]. Microelectronics & Computer,2023,40(2):37-49. doi: 10.19304/J.ISSN1000-7180.2022.0281

Camellia算法的量子资源评估

Quantum resource evaluation of Camellia algorithm

  • 摘要: Camellia算法是一种在国际上使用广泛的分组密码算法,其拥有着高安全性、软硬件实现效率高等特点. 为了在量子计算的硬件平台使用这类密码算法,首先要从综合角度出发考虑实现他们的量子电路. 通过结合Camellia算法的结构特点,给出了算法在量子电路模型下的量子资源消耗,其中包括量子比特数、通用量子逻辑门数、量子电路深度以及电路的量子比特数与T深度的乘积值等. 首先,使用改进的Itoh-Tsujii算法、高斯消元法以及有限域上求逆等方法,优化了算法S盒的量子实现方案. 其次,根据轮函数线性部件的设计特点,给出了密钥拓展结构的量子优化实现方案,该方案在一定程度上减少了辅助量子比特的使用. 在此基础上,利用计算常数参量汉明重量的方法,将CNOT门转化为Pauli-X门以减少量子资源的消耗. 并使用改进的zig-zag结构将算法的主要组件结合起来,给出了Camellia算法的量子电路实现. 最后,该方案给出了Camellia算法在三种不同版本密钥下所消耗的量子资源. 与传统方法和其他算法的量子电路实现对比,该文的方案所消耗的量子资源更少. 该电路的提出将会为量子环境下Camellia算法的深入研究奠定基础.

     

    Abstract: Camellia algorithm is a block cipher algorithm widely used in the world, which has the characteristics of high security, high efficiency of software and hardware implementation. In order to use such cryptographic algorithms on the hardware platform of quantum computing, the realization of their quantum circuits must first be considered from a comprehensive perspective. Combining the structural characteristics of the Camellia algorithm, the quantum resource consumption of the algorithm under the quantum circuit model is given, including the number of qubits, the number of general quantum logic gates, the depth of the quantum circuit, and the product value of the number of qubits of the circuit and the depth of T. First, using the improved Itoh-Tsujii algorithm, Gaussian elimination method, and inversion over finite fields, the quantum implementation of the algorithm S-box is optimized. Secondly, according to the design characteristics of the linear part of the round function, a quantum optimization implementation scheme of the key expansion structure is given, which reduces the use of auxiliary qubits to a certain extent. On this basis, using the method of calculating the constant parameter Hamming weight, the CNOT gate is converted into a Pauli-X gate to reduce the consumption of quantum resources. And using the improved zig-zag structure to combine the main components of the algorithm, a quantum circuit implementation of the Camellia algorithm is given. Finally, the scheme gives the quantum resources consumed by the Camellia algorithm under three different versions of keys. Compared with quantum circuit implementations of traditional methods and other algorithms, the proposed scheme consumes less quantum resources. The proposed circuit will lay the foundation for the in-depth study of Camellia algorithm in quantum environment.

     

/

返回文章
返回