A 50~64Gb/s DSP used in SERDES receiver
-
摘要:
介绍了一种基于4脉冲幅度调制(PAM4)SERDES接收机中的专用数字信号处理器(DSP),主要解决高速串行接口中在50~64 Gb/s的超高速传输速率和20~30 dB大幅度信道衰减下的数据恢复问题.该DSP的32路并行结构使系统能够处理50~64 Gb/s的高速数据信号; 同时,应用了16-tap的前馈均衡器(FFE),解决了20~30 dB大幅度信道衰减下的数据恢复问题; 运用了最小均方算法(LMS)的自适应算法与FFE结合使用,使其能够在不同的信道衰减下都能够自适应的找到最佳的高频补偿并消除传输信道所产生的衰减影响和码间干扰(ISI)问题; 同时,为解决传统判决反馈均衡器(DFE)在实现并行结构时带来的反馈环路的时序紧张问题,采用了预判决式结构改良的DFE,其级联在FFE后用来消除剩余的ISI并判决出正确数据信号从而配合FFE均衡恢复出原数据信号.该DSP架构在通过仿真验证后利用28nm CMOS工艺进行了加工制造,通过仿真验证和测试验证发现其能够在50 Gb/s的传输速率和20~30 dB信道衰减下达到良好的均衡效果.最终的DSP芯片面积为2.02 mm2,误码率最低到5.21e-9.
-
关键词:
- SERDES接收机 /
- 信道 /
- 数字信号处理器(DSP) /
- 前馈均衡器(FFE) /
- 最小均方算法(LMS)
Abstract:This paper introduces a special digital signal processor (DSP) in SerDes receiver based on 4-pulse amplitude modulation (pam4). It is mainly committed to solving the data recovery problem in a high-speed serial interface under the ultra-high transmission rate of 50~64gb/s and 20-30db large channel attenuation. The 32 channels parallel structure of this DSP enables the system to process 50~64gb/s high-speed data signals; At the same time, 16 tap feedforward equalizer (FFE) is applied to solve the problem of data recovery under 20~30db large channel attenuation; The adaptive algorithm using the least mean square algorithm (LMS) is combined with FFE, so that it can adaptively find the best high-frequency compensation under different channel attenuation and eliminate the attenuation effect and inter symbol interference (ISI) caused by the transmission channel; At the same time, in order to solve the timing tension of the feedback loop caused by the parallel structure of the traditional decision feedback equalizer (DFE), a DFE with improved pre-decision structure is adopted, which is cascaded after the FFE to eliminate the remaining ISI and determine the correct data signal, so as to cooperate with the FFE to balance and recover the original data signal. This DSP architecture was manufactured by using 28nm CMOS process after simulation verification. Simulation and test verification found that it can achieve a good equalization effect at 50gb/s transmission rate and 20~30db channel attenuation. The final DSP chip area is 2.02 mm2, and the bit error rate is as low as 5.21e-9.
-
-
[1] DE ABREU FARIAS NETO P W, HEARNE K, CHLIS I, et al. A 112 - 134-Gb/s PAM4 receiver using a 36-way dual-comparator TI-SAR ADC in 7-nm FinFET[J]. IEEE Solid-State Circuits Letters, 2020, 3: 138-141. DOI: 10.1109/LSSC.2020.3007580. [2] KIRAN S, CAI S C, ZHU Y M, et al. Digital equalization with ADC-based receivers: two important roles played by digital signal processingin designing analog-to-digital-converter-based wireline communication receivers[J]. IEEE Microwave Magazine, 2019, 20(5): 62-79. DOI: 10.1109/MMM.2019.2898025. [3] 钱丽霞. 基于长线传输系统的自适应FFE-DFE均衡技术的研究[D]. 南京: 南京邮电大学, 2015.QIAN L X. Research of FFE-DEF adaptive equalization technology in long-line transmission system[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015. [4] BAILEY J, SHAKIBA H, NIR E, et al. 8.8 A 112Gb/s PAM-4 low-power 9-tap sliding-block DFE in a 7nm FinFET Wireline receiver[C]//2021 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco: IEEE, 2021: 140-142. DOI: 10.1109/ISSCC42613.2021.9365853. [5] 徐洪敏, 肖丕强, 黄小燕. 光纤通信网络子信道快速动态分配方法[J]. 激光杂志, 2021, 42(11): 128-132. DOI: 10.14016/j.cnki.jgzz.2021.11.128.XU Hongmin, XIAO Piqiang, HUANG Xiaoyan. Fast dynamic allocation method of subchannels in optical fiber communication network[J]. Laser Journal, 2021, 42(11): 128-132. DOI: 10.14016/j.cnki.jgzz.2021.11.128. [6] LACROIX M A, WONG H, LIU Y H, et al. 6.2 a 60Gb/s PAM-4 ADC-DSP transceiver in 7nm CMOS with SNR-based adaptive power scaling achieving 6.9pJ/b at 32dB loss[C]//2019 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco: IEEE, 2019: 114-116. DOI: 10.1109/ISSCC.2019.8662322. [7] 闫华, 杨煜. 应用于10Gbit/s光通信及背板传输的自适应均衡器设计[J]. 电子与封装, 2020, 20(5): 49-55. DOI: 10.16257/j.cnki.1681-1070.2020.0513.YAN Hua, YANG Yu. Design of an adaptive equalizer for 10 Gbit/s optical and backplane communications[J]. Electronics & Packaging, 2020, 20(5): 49-55. DOI: 10.16257/j.cnki.1681-1070.2020.0513. [8] EL-GAMMAL K A, HASSAN A N, IBRAHIM S A. A 10 Gbps ADC-based equalizer for serial I/O receiver[C]//2015 10th International Design & Test Symposium (IDT). Amman: IEEE, 2015: 38-43. DOI: 10.1109/IDT.2015.7396733. [9] WIDROW B, HOFF M E. Adaptive switching circuits[J]. 1960 IRE WESCON Convention Record, 1960: 96-104. [10] 冯琪琛, 俞剑, 徐烈伟, 等. 一款基于码型检测SS-LMS算法的自适应均衡接收器[J]. 复旦学报(自然科学版), 2019, 58(4): 441-453. DOI: 10.15943/j.cnki.fdxb-jns.2019.04.005.FENG Qichen, YU Jian, XU Liewei, et al. A receiver with self-adaptive equalizer controlled by pattern detection based SS-LMS algorithm[J]. Journal of Fudan University (Natural Science), 2019, 58(4): 441-453. DOI: 10.15943/j.cnki.fdxb-jns.2019.04.005. [11] 展永政, 胡庆生. 采用0.18μm CMOS工艺的高速模拟自适应判决反馈均衡器[J]. 浙江大学学报(工学版), 2019, 53(12): 2423-2430. DOI: 10.3785/j.issn.1008-973X.2019.12.021.ZHAN Yongzheng, HU Qingsheng. High-speed analog-adaptive decision feedback equalizer with 0.18 μm CMOS technology[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(12): 2423-2430. DOI: 10.3785/j.issn.1008-973X.2019.12.021. [12] TRAKULTRITRUNG A, THANANGCHUSIN E, CHIVAPREECHA S. Distributed arithmetic LMS adaptive filter implementation without look-Up table[C]//2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Phetchaburi: IEEE, 2012: 1-4. DOI: 10.1109/ECTICon.2012.6254284. [13] NEKOUEI F, TALEBI N Z, KAVIAN Y S, et al. FPGA implementation of LMS self correcting adaptive filter (SCAF) and hardware analysis[C]//2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing. Poznan: IEEE, 2012: 1-5. DOI: 10.1109/CSNDSP.2012.6292753. [14] 赵文斌, 张长春, 张桄华, 等. 一种25Gbit/s CMOS自适应判决反馈均衡器[J]. 微电子学, 2021, 51(5): 666-671. DOI: 10.13911/j.cnki.1004-3365.200569.ZHAO Wenbin, ZHANG Changchun, ZHANG Guanghua, et al. A 25 Gbit/s CMOS adaptive decision feedback equalizer[J]. Microelectronics, 2021, 51(5): 666-671. DOI: 10.13911/j.cnki.1004-3365.200569. [15] OH D, PARHI K K. Low complexity design of high speed parallel decision feedback equalizers[C]//IEEE 17th International Conference on Application-Specific Systems, Architectures and Processors. Steamboat Springs: IEEE, 2006: 118-124. DOI: 10.1109/ASAP.2006.43. [16] UPADHYAYA P, POON C F, LIM S W, et al. A fully adaptive 19-58-Gb/s PAM-4 and 9.5-29-Gb/s NRZ Wireline transceiver with configurable ADC in 16-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 2019, 54(1): 18-28. DOI: 10.1109/JSSC.2018.2875091. -