A strong real-time traffic scheduling and automatic configuration method for TSN based on NeSTiNg
-
摘要:
流量调度是时间敏感网络(Time Sensitive Networking,TSN)技术的核心.在大型工业嵌入式系统应用中,TSN流量调度的设计和仿真阶段需要对链路、流、门控等调度信息进行复杂且苛刻的配置.现有的基于仿真框架的配置方法多采用手动配置,这阻碍了这些框架对大型TSN网络的适用性.基于TSN强实时流量传输机制和NeSTiNg(Network Simulator for Time-Sensitive Networking)框架,提出一种适用于大型网络的强实时流量调度和自动配置方法.首先,该方法区别于传统的手动配置输入方式,实现了对流偏移、门状态和路由表等信息的自动配置; 其次,该方法提取了流的端到端时延,验证了大型网络中TSN传输的强实时性; 最后,通过计算拓扑变化后选择新路径的运算时间,评估了该方法对动态拓扑的适用性.结果表明:该方法保证了大型网络中大量流传输的强实时性,且当拓扑改变时,相比于静态路由有更低的运算时间.
Abstract:Traffic scheduling is the core of Time Sensitive Networking (TSN) technology. In large-scale industrial embedded system applications, the design and simulation stages of TSN traffic scheduling require complex and demanding configuration of scheduling information such as links, flows, and gating. Existing configuration methods based on simulation frameworks mostly use manual configuration, which hinders the applicability of these frameworks to large-scale TSN networks. Based on the strong real-time traffic transmission mechanism of TSN and the NeSTiNg (Network Simulator for Time-Sensitive Networking) framework, this paper proposes a strong real-time traffic scheduling and automatic configuration method suitable for large networks. First, this method is different from the traditional manual configuration input method, and realizes the automatic configuration of information such as flow offsets, gate status and routing tables; secondly, the method extracts the end-to-end delay of the flow, which verifies the strong real-time performance of TSN transmission in large networks; finally, the applicability of the method to dynamic topology is evaluated by calculating the computing time of selecting a new path after topology changes. The results show that this method guarantees strong real-time transmission of large numbers of flows in a large network, and when the topology changes, it has a lower computing time than static routing.
-
Key words:
- TSN /
- IEEE 802.1Qbv /
- NeSTiNg /
- traffic scheduling /
- automatic configuration /
- evaluation of TSN /
- computing time
-
表 1 40组基本流的最大端到端延迟
Table 1. Maximum end to end delay of 40 basic flows
ID TX RX 周期/μs 延迟/μs ID TX RX 周期/μs 延迟/μs 1 ES0 ES6 5 000 51 21 ES6 ES7 5 000 32 2 ES1 ES7 2 000 50 22 ES6 ES8 2 000 24 3 ES1 ES8 1 000 52 23 ES7 ES1 5 000 58 4 ES1 ES9 2 000 92 24 ES7 ES2 5 000 77 5 ES1 ES10 5 000 37 25 ES7 ES4 1 000 71 6 ES2 ES3 1 000 94 26 ES8 ES0 2 000 158 7 ES2 ES7 1 000 82 27 ES8 ES10 1 000 71 8 ES3 ES1 5 000 81 28 ES8 ES11 5 000 74 9 ES3 ES2 5 000 66 29 ES9 ES0 5 000 971 10 ES3 ES4 2 000 25 30 ES9 ES1 5 000 52 11 ES3 ES5 2 000 38 31 ES9 ES3 5 000 38 12 ES4 ES3 5 000 52 32 ES10 ES2 5 000 62 13 ES4 ES8 1 000 67 33 ES10 ES5 5 000 71 14 ES4 ES9 1 000 97 34 ES10 ES6 1 000 118 15 ES4 ES11 5 000 52 35 ES10 ES7 5 000 135 16 ES5 ES0 2 000 779 36 ES10 ES11 5 000 39 17 ES5 ES2 5 000 86 37 ES11 ES2 5 000 61 18 ES5 ES4 2 000 38 38 ES11 ES7 1 000 97 19 ES5 ES6 5 000 53 39 ES11 ES9 5 000 43 20 ES6 ES5 5 000 61 40 ES11 ES10 5 000 48 表 2 增加流的运算时间对比
Table 2. Computing time comparison when adding streams
流数目 运算时间/s 静态调度 自动配置 10+1 0.192 0.021 20+1 0.482 0.056 30+1 1.13 0.112 表 3 交换机故障的运算时间对比
Table 3. Computing time comparison when a switch fails
流数目 运算时间/s 静态调度 自动配置 10 0.023 8 0.013 20 0.318 2 0.188 30 0.749 9 0.334 -
[1] JIANG J H, LI Y T, HONG S H, et al. A time-sensitive networking (TSN) simulation model based on OMNET++[C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA). Changchun: IEEE, 2018: 643-648. DOI: 10.1109/ICMA.2018.8484302. [2] 冯泽坤, 龚龙庆, 徐丹妮, 等. 时间敏感网络中基于ILP的动态流量均衡调度算法[J]. 微电子学与计算机, 2021, 38(6): 33-37. DOI: 10.19304/j.cnki.issn1000-7180.2021.06.006.FENG Z K, GONG L Q, XU D N, et al. ILP-based dynamic flow balancing scheduling algorithm in time sensitive network[J]. Microelectronics & Computer, 2021, 38(6): 33-37. DOI: 10.19304/j.cnki.issn1000-7180.2021.06.006. [3] IEEE. IEEE 802.1 Time-sensitive networking (TSN) task group[S]. IEEE. [4] CRACIUNAS S S, OLIVER R S, AG T. An overview of scheduling mechanisms for time sensitive networks[C]//Proceedings of the Real-Time Summer School LÉcole dÉté Temps Réel (ETR). 2017: 1551-3203. [5] HOUTAN B, BERGSTRÖM A, ASHJAEI M, et al. An automated configuration framework for TSN networks[C]//2021 22nd IEEE International Conference on Industrial Technology (ICIT). Valencia: IEEE, 2021: 771-778. DOI: 10.1109/ICIT46573.2021.9453628. [6] HELLMANNS D, FALK J. Nesting - network simulator for time sensitive networking[EB/OL]. [2022-03-15]. https://gitlab.com/ipvs/nesting. [7] IEEE. IEEE Std 802.1Qbv-2015 IEEE standard for local and metropolitan area networks-bridges and bridged networks-amendment 25: enhancements for scheduled traffic[S]. Piscataway, NJ: IEEE, 2016. DOI: 10.1109/IEEESTD.2016.8613095. [8] 张磊, 王盼盼. 时间敏感网络流量整形技术综述[J]. 微电子学与计算机, 2022, 39(1): 46-53. DOI: 10.19304/J.ISSN1000-7180.2021.0629.ZHANG L, WANG P P. Survey of traffic shaping and scheduling in time-sensitive network[J]. Microelectronics & Computer, 2022, 39(1): 46-53 DOI: 10.19304/J.ISSN1000-7180.2021.0629. [9] FALK J, HELLMANNS D, CARABELLI B, et al. NeSTiNg: simulating IEEE time-sensitive networking (TSN) in OMNeT++[C]//2019 International Conference on Networked Systems (NetSys). Munich: IEEE, 2019: 1-8. DOI: 10.1109/NetSys.2019.8854500. [10] OMNeT++ discrete event simulator[EB/OL]. (2022-03-15). https://omnetpp.org/. [11] INET framework[EB/OL]. [2022-03-14]. https://inet.omnetpp.org. [12] An open-source S/OMT solver: z3-solver 4.9.1.0[EB/OL]. (2022-03-07). https://pypi.org/project/z3-solver/. -