欧阳勇, 万豆, 高榕, 叶志伟. 基于自注意力的TCN-Transformer的电网单相故障检测方法[J]. 微电子学与计算机, 2022, 39(9): 89-97. DOI: 10.19304/J.ISSN1000-7180.2021.1331
引用本文: 欧阳勇, 万豆, 高榕, 叶志伟. 基于自注意力的TCN-Transformer的电网单相故障检测方法[J]. 微电子学与计算机, 2022, 39(9): 89-97. DOI: 10.19304/J.ISSN1000-7180.2021.1331
OUYANG Yong, WAN Dou, GAO Rong, YE Zhiwei. Research on single-phase fault line selection in distribution network based on TCN+Transformer Self-Attention[J]. Microelectronics & Computer, 2022, 39(9): 89-97. DOI: 10.19304/J.ISSN1000-7180.2021.1331
Citation: OUYANG Yong, WAN Dou, GAO Rong, YE Zhiwei. Research on single-phase fault line selection in distribution network based on TCN+Transformer Self-Attention[J]. Microelectronics & Computer, 2022, 39(9): 89-97. DOI: 10.19304/J.ISSN1000-7180.2021.1331

基于自注意力的TCN-Transformer的电网单相故障检测方法

Research on single-phase fault line selection in distribution network based on TCN+Transformer Self-Attention

  • 摘要: 小电流接地系统单相故障选线问题是配电网电力系统故障中的一个重要问题.由于电力故障数据具有时间延续性,并且电力故障数据的数据长度过长,现有的研究工作不能有效区分具有时序性的单相接地故障电流的特征.针对这些问题,提出一种基于自注意力的TCN+Transformer混合神经网络模型(称为TTHNN-SA模型).由于电力故障数据的特征单一,使用小波变换分解和主成分分析(PCA)方法能增加样本数据的特征量.TTHNN-SA模型使用时间卷积网络(TCN)分别对原故障数据和对原故障数据使用小波变换分解后的数据进行卷积操作提取特征,使用Transformer对经过主成分分析方法处理后的样本数据进行特征提取.然后将三个模型提取的特征矩阵进行融合后输入到自注意力层,通过自注意力机制的矩阵计算给重要特征分配更高权重,并且能解决模型的长时依赖问题.最后将自注意力层的输出通过全局平均池化后使用softmax函数进行分类.TTHNN-SA模型能更全面的学习到不同波形故障之间的电流数据关系,TTHNN-SA模型对配电网单相故障的检测具有良好的效果.

     

    Abstract: The single-phase fault routing problem of small-current grounding systems is an important problem in the fault of distribution network power systems. Due to the temporal continuity and excessive data length of power fault data and the fact that existing research work cannot effectively distinguish the characteristics of single-phase ground fault currents with timing. To overcome these problems, this paper proposed a hybrid neural network model based on a self-attentive TCN+Transformer (called TTHNN-SA model). Since the power fault data has a single feature, the use of wavelet transform decomposition and principal component analysis (PCA) methods can increase the number of features in the sample data. Therefore, the TTHNN-SA model used a temporal convolution network (TCN) to extract features by convolution operations on the original fault data and on the fault data decomposed by wavelet transform separately respectively, applied Transformer to extract the features of the fault data processed by PCA. Then the extracted feature matrices of the three models were fused and input to the self-attentive layer, and this layer assigned higher weights to the important features through matrix calculation, which can solve the long-time dependence problem of the model. Finally, the output of the self-attentive layer was pooled by global averaging and then classified using the softmax function. the TTHNN-SA model can learn the current data relationship between different waveform faults more comprehensively, and it had a good effect on the detection of single-phase faults in distribution networks.

     

/

返回文章
返回