Research on path dynamic redundancy strategy in Time Sensitive Network
-
摘要:
围绕时间敏感网络的高可靠性需求,针对现有冗余技术不能为不连续的多个单节点故障提供高可靠性保证的问题,开展了时间敏感网络路径动态冗余技术研究,设计了一种基于IEEE 802.1CB协议和IEEE 802.1Qcc协议的路径动态冗余策略.在网络存在两条不相交冗余路径进行无缝传输的基础上,首先用序列恢复功能中改进的动态可变长滑动窗口VariableVectoryRecovery算法进行帧的复制、删除和节点故障检测, 并上报告给集中式网络配置管理节点;其次提出了多目标优化BackupReroute模型,从时延和带宽两方面对修复路径做优化,并用遗传算法求解,在保证网络可靠性的同时尽量降低网络负载,动态重组冗余系统.通过理论分析证明了该路径动态冗余策略可以为不连续多节点故障提供高可靠性保证;并将BackupReroute模型与其他选路算法对比,得出其求出的路径整体性能更优;最后在OMNeT++上将VariableVectoryRecovery算法进行仿真实验,结果证明其可以有效降低丢包率.
-
关键词:
- TSN /
- IEEE 802.1CB /
- IEEE 802.1Qcc /
- 遗传算法 /
- 多目标优化 /
- 动态冗余
Abstract:Focusing on the high reliability requirements of Time Sensitive Networks, the research on path dynamic redundancy technology is carried out to address the problem that the existing redundancy technology cannot provide high reliability guarantee for discontinuous multiple single node failures.Based on the existence of two disjoint redundant paths in the network for seamless transmission, a path dynamic redundancystrategyis designed on the basis of IEEE 802.1CB protocol and IEEE 802.1Qcc protocol.Firstly, the dynamic variable length sliding window VariableVectoryRecovery algorithm is improved in the sequence recovery function for frame replication, node failure detection, and reported to the centralized network configuration management node.Secondly, a multi-objective optimized BackupReroute model is proposed to repair thepath in terms of delay and bandwidth, and solved by genetic algorithm to ensure network reliability while minimizing network load and dynamically reorganizing the redundant system. The theoretical analysis proves that this path dynamic redundancy strategy can provide high reliability guarantee for discontinuous multi-node failures.Comparing with other routing algorithms, the BackupReroute model overall performance is better.Finally, the simulation experiment of VariableVectoryRecovery algorithm is conducted on OMNeT++, and the results prove that it can effectively reduce the packet loss rate.
-
Key words:
- TSN /
- IEEE 802.1CB /
- IEEE 802.1Qcc /
- genetic algorithm /
- multi-objective optimization /
- dynamic redundancy
-
[1] 宋华振. 时间敏感型网络技术综述[J]. 自动化仪表, 2020, 41(2): 1-9. DOI: 10.16086/j.cnki.issn1000-0380.2019110024.SONG H Z. Summary on time sensitive network technology[J]. Process Automation Instrumentation, 2020, 41(2): 1-9. DOI: 10.16086/j.cnki.issn1000-0380.2019110024. [2] 张磊, 王盼盼. 时间敏感网络流量整形技术综述[J]. 微电子学与计算机, 2022, 39(1): 46-53. DOI: 10.19304/J.ISSN1000-7180.2021.0629.ZHANG L, WANG P P. Survey of traffic shaping and scheduling in time-sensitive network[J]. Microelectronics & Computer, 2022, 39(1): 46-53. DOI: 10.19304/J.ISSN1000-7180.2021.0629. [3] 苏海滨, 史永丽, 侯朝桢. 基于遗传算法的多目标多路径优化选择算法研究[J]. 微电子学与计算机, 2006, 23(10): 41-43. DOI: 10.3969/j.issn.1000-7180.2006.10.015.SU H B, SHI Y L, HOU Z Z. Multiobjective and multi-path optimization selection methods based on genetic algorithms[J]. Microelectronics & Computer, 2006, 23(10): 41-43. DOI: 10.3969/j.issn.1000-7180.2006.10.015. [4] 姚宗辰, 蔡岳平, 李天驰. 时间敏感网络基于帧复制与消除节点优化选取算法的转发机制[C]//人民邮电出版社电信科学编辑部. 2020中国信息通信大会论文集(CICC 2020). 北京: 人民邮电出版社, 2020: 516-521. DOI: 10.26914/c.cnkihy.2020.055884.YAO Z C, CAI Y P, LI T C. Forwarding mechanism of Time Sensitive Networks based on frame replication and elimination optimization node selection algorithm[C]//The Conference Proceedings of CICC 2020 (CICC 2020). Beijing: Posts & Telecom Press, 2020: 516-521. DOI: 10.26914/c.cnkihy.2020.055884. [5] 朱娟芳, 霍欢, 徐亚, 等. 一种基于滑动窗口的不确定数据流聚类算法[J]. 信息技术, 2013, 37(4): 1-5. DOI: 10.3969/j.issn.1009-2552.2013.04.001.ZHU J F, HUO H, XU Y, et al. Clustering algorithm over uncertain data streams based on sliding window[J]. Information Technology, 2013, 37(4): 1-5. DOI: 10.3969/j.issn.1009-2552.2013.04.001. [6] 玄光男, 林林. 网络模型与多目标遗传算法[M]. 梁承姬, 于歆杰, 译. 北京: 清华大学出版社, 2017.XUAN G N, LIN L. Netword models and multiobjective genetic algorithm[M]. LIANG C J, YU X J, trans. Beijing: Tsinghua University Press, 2017. [7] 张志华. 可靠性理论及工程应用[M]. 北京: 科学出版社, 2012.ZHANG Z H. Reliability theory and engineering application[M]. Beijing: Science Press, 2012. [8] IEEE. IEEE P802.1Qbu/03.0 IEEE draft standard for local and metropolitan area networks-media access control (MAC) bridges and virtual bridged local area networks amendment: frame preemption[S]. IEEE, 2015. [9] IEEE. IEEE Std 802.1CB-2017 IEEE standard for local and metropolitan area networks--frame replication and elimination for reliability[S]. IEEE, 2017. DOI: 10.1109/IEEESTD.2017.8091139. [10] IEEEdraft standard for frame replication and elimination for reliability amendment: information model, YANG data model and management information base module[C]//IEEE P802.1CBcv/D0.4, 2020. [11] IEEE Draft Standard for802.1CBdb Genetic 2 layer stream identification function[C]//IEEE P802.1CBDB/DO. 7, 2020. -