Fly visual evolutionary neural network solving constrained function optimization
-
摘要:
具有广泛工程应用背景的强非线性约束优化是最优化领域极为困难的科技问题,如何寻找快速有效的优化算法求解其全局最优化解,仍然是该问题研究的关键.为此,针对强非线性约束函数优化求解难的问题,融合果蝇视觉系统的信息处理机制与种群进化思想,提出一种基于状态矩阵转移的改进型果蝇视觉进化神经网络.模型设计中,将候选解视为状态,构建以状态作为元素的状态矩阵,进而将状态矩阵中各元素对应的目标值形成的灰度图视为输入;依据果蝇视觉系统的分层视觉信息处理特性,构建能有效处理约束条件的改进型果蝇视觉前馈神经网络,进而将其输出作为状态转移的全局学习率;依据鲸鱼捕食的行为特性建立转移状态的更新策略.由此,获得仅含两个可调参数且计算复杂度仅由输入灰度图分辨率确定的视觉进化神经网络.比较性的数值实验表明,此神经网络的寻优质量具有明显优势,对工程优化问题的解决具有重要参考价值.
Abstract:The problem of strongly nonlinear constrained optimization is an extremely difficult topic with comprehensive engineering background in the field of optimization. It is still crucial how to explore effective and efficient optimizers for seeking the global optima of the problem. Therefore, to cope with the difficulty of solving function optimization problems with strongly nonlinear constraints, this work develops a state matrix transition-based improved fly visual evolutionary neural network, by integrating the inspiration of population evolution with the information-processing mechanism of the fly visual system. In the design of the model, the input is a grayscale image which matches with a state matrix at any moment. Each grayscale denotes the object value of a candidate so-called state; an improved fly visual feed forward neural network is designed to not only generate a global learning rate, but also effectively deal with the constraints of the problems, relying upon the property of hierarchical information-processing of the visual system; each state is transformed into another one by a strategy of state transition with the help of the learning rate and the whale's location update strategy. The theoretical analyses show that the computational complexity of the visual evolutionary neural network is decided only by the resolution of each input image. The comparative experiments validate that the neural network has major advantages in optimization quality and important reference value for solving engineering optimization problems.
-
表 1 算法独立运行25次后获得的统计结果比较
Table 1. Comparison of statistical results obtained after the algorithm runs 25 times independently
Problem/ Optimal value Features WOA CGWO ODPSO NDE IFVENN g01/-15 Mean -14.413 11 -14.851 58 -14.990 28 -15 -15 Std 1.77E-01 1.33E-01 3.58E-03 0.00E+00 0.00E+00 g02/-0.803619 Mean -0.781 43 -0.781 64 -0.768 75 -0.790 52 -0.803 53 Std 9.98E-03 1.33E-02 9.69E-03 2.51E-02 8.99E-05 g03/-1 Mean -0.998 19 -0.999 73 -0.981 17 -1 -1 Std 7.80E-04 1.29E-04 8.93E-03 0.00E+00 0.00E+00 g04/-30665.53 Mean -30 653.924 -30 664.285 -30 664.675 -30 665.538 -30 665.538 Std 4.32E+00 2.26E-01 9.28E-06 1.26E-07 0.00E+00 g05/5126.4981 Mean 5 198.264 0 5 137.560 4 5 182.024 0 5 127.028 9 5 126.506 1 Std 4.98E+01 1.44E+01 5.56E+01 8.93E-01 1.79E-03 g06/-6 961.813 Mean -6 961.470 2 -6 959.091 6 -6 961.713 8 -6 961.813 8 -6 961.813 8 Std 1.72E-01 1.41E+00 3.71E-02 0.00E+00 0.00E+00 g07/24.306 209 Mean 26.854 04 27.286 34 24.405 89 25.541 38 24.389 3 Std 1.82E+00 1.84E+00 3.35E-01 8.91E-01 2.80E-02 g08/-0.095 825 Mean -0.095 83 -0.095 83 -0.095 83 -0.095 83 -0.095 83 Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E-00 g09/680.630 05 Mean 680.757 0 680.639 3 682.013 2 681.164 4 680.634 1 Std 1.02E-01 6.92E-02 1.12E+00 1.71E+00 1.52E-03 g10/7 049.330 7 Mean 7 592.310 0 7 114.987 6 7 216.025 9 7 171.707 6 7 099.347 9 Std 3.64E+02 4.15E+01 1.57E+02 6.61E+01 1.23E+01 g11/0.75 Mean 0.75 0.75 0.75 0.75 0.75 Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 g12/-1 Mean -1.000 0 -1.000 0 -1.000 0 -1.000 0 -1.000 0 Std 00E+00 0.00E+00 0.00E-00 0.00E+00 0.00E+00 g13/0.0539415 Mean 0.675 2 0.099 5 0.304 4 0.245 2 0.278 2 Std 1.28E-01 1.08E-01 1.96E-01 1.16E-01 1.10E-01 g14/-47.76488 Mean -46.750 1 -47.410 2 -45.935 7 -47.583 7 -47.049 3 Std 5.21E-01 2.06E-01 5.71E-01 2.35E-02 7.41E-02 g15/961.71502 Mean 961.716 1 961.716 6 961.812 2 961.719 0 961.719 2 Std 1.09E-03 1.22E-03 8.05E-02 6.62E-03 1.44E-02 g16/-1.905155 Mean -1.902 1 -1.902 1 -1.876 6 -1.905 1 -1.905 15 Std 6.63E-04 9.41E-04 2.79E-02 2.63E-05 2.73E-09 g17/8 853.539 6 Mean 8 853.949 6 8 853.702 0 8 880.316 0 8 853.727 6 8 853.539 8 Std 2.42E-01 1.17E-01 2.02E+01 2.85E-01 0.00E+00 g18/-0.866 025 Mean -0.669 1 -0.863 56 -0.828 67 -0.854 05 -0.865 5 Std 9.41E-02 3.78E-03 2.25E-02 7.40E-03 1.70E-03 g19/32.655 59 Mean 40.554 7 35.572 13 35.690 7 41.185 79 40.965 4 Std 2.49E+00 7.27E-01 1.18E+00 1.55E+00 3.12E+00 g21/193.724 Mean 357.367 8 297.339 56 260.020 6 360.556 62 277.392 3 Std 4.70E+01 4.78E+01 4.37E+01 8.49E+01 3.75E+02 g23/-400.055 Mean -182.809 7 267.184 00 -318.564 36 -48.517 27 -315.447 7 Std 1.33E+01 3.75E+02 5.77E+00 7.39E+01 7.68E+01 g24/-5.508 01 Mean -5.508 01 -5.508 00 -5.504 4 -5.508 01 -5.508 01 Std 5.10E-06 8.36E-07 2.17E-03 0.00E+00 0.00E+00 w/t/l 15/7/0 12/7/3 14/7/1 8/13/1 / 表 2 算法的统计结果比较
Table 2. Comparison of statistical results of various algorithms
算法 最好值 均值 最差值 标准差 WOA 22.918 7 23.058 2 23.409 8 1.24E-01 CGWO 22.902 0 22.979 0 23.206 9 7.40E-02 ODPSO 22.913 8 23.029 9 23.209 1 8.09E-02 NDE 22.862 9 22.908 1 23.104 3 6.12E-02 IFVENN 22.863 2 22.879 2 22.897 6 8.04E-03 -
[1] SARGHINI F, DE VIVO A. Application of constrained optimization techniques in optimal shape design of a freezer to dosing line splitter for ice cream production[J]. Food Engineering Reviews, 2021, 13(1): 262-273. DOI: 10.1007/s12393-020-09258-5. [2] 陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 1989.CHEN B L. Optimization theory and algorithm[M]. Beijing: Tsinghua University Press, 1989. [3] KARADENIZ A, ELK Y. Whale optimization algorithm for numerical constrained optimization[J]. Academic Platform Journal of Engineering and Science, 2020, 8(8): 547-554. DOI: 10.21541/apjes.551526. [4] KOHLI M, ARORA S. Chaotic grey wolf optimization algorithm for constrained optimization problems[J]. Journal of Computational Design and Engineering, 2018, 5(4): 458-472. DOI: 10.1016/j.jcde.2017.02.005. [5] 梁静, 葛士磊, 瞿博阳, 等. 求解电力系统经济调度问题的改进粒子群优化算法[J]. 控制与决策, 2020, 35(8): 1813-1822. DOI: 10.13195/j.kzyjc.2018.1490.LIANG J, GE S L, QU B Y, et al. Improved particle swarm optimization algorithm for solving power system economic dispatch problem[J]. Control and Decision, 2020, 35(8): 1813-1822. DOI: 10.13195/j.kzjc.2018.1490. [6] MOHAMED A W. A novel differential evolution algorithm for solving constrained engineering optimization problems[J]. Journal of Intelligent Manufacturing, 2018, 29(3): 659-692. DOI: 10.1007%2Fs10845-017-1294-6. [7] ZHANG Z H, YUE S G, ZHANG G P. Fly visual system inspired artificial neural network for collision detection[J]. Neurocomputing, 2015, 153: 221-234. DOI: 10.1016/j.neucom.2014.11.033. [8] ZHANG Z H, LI L, LU J X. Gradient-based fly immune visual recurrent neural network solving large-scale global optimization[J]. Neurocomputing, 2021, 454: 238-253. DOI: 10.1016/j.neucom.2021.05.002. [9] ZHANG Z H, XIAO T Y, QIN X C. Fly visual evolutionary neural network solving large-scale global optimization[J]. International Journal of Intelligent Systems, 2021, 36(11): 6680-6712. DOI: 10.1002/int.22564. [10] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI: 10.1016/j.advengsoft.2016.01.008. [11] 王涛, CHELLALI R. 非线性权重和收敛因子的鲸鱼算法[J]. 微电子学与计算机, 2019, 36(1): 11-15. DOI: 10.19304/j.cnki.issn1000-7180.2019.01.003.WANG T, CHELLALI R. Whale optimization algorithm with nonlinear weight and convergence factor[J]. Microelectronics & Computer, 2019, 36(1): 11-15. DOI: 10.19304/j.cnki.issn1000-7180.2019.01.003. [12] BRAXUN D, SZCZECINSKI N S, KULJ G, et al. Artificial compound eye and synthetic neural system for motion recognition[C]// 7th International Conference on Biomimetic and Biohybrid Systems. Paris, France: Springer International Publishing, 2018: 52-63. [13] J. J. Liang, Thomas Philip Runarsson, Efren Mezura-Montes, Maurice Clerc, P. N. Suganthan, Carlos A. Coello Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore, March 2006, http://www5.zzu.edu.cn/cilab/fblw/jsbg.htm [14] GU L, YANG R J, THO C H, et al. Optimisation and robustness for crashworthiness of side impact[J]. International Journal of Vehicle Design, 2001, 26(4): 348-360. DOI: 10.1504/IJVD.2001.005210. -