Overview of quantum computing simulation platforms
-
摘要:
量子计算模拟平台是运行在传统计算上具备量子计算功能的系统,是量子计算领域重要的研究工具.在目前量子计算机发展不成熟的阶段,是业界推动量子计算软件、算法和硬件发展的有效途径.面向不同需求的用户类型,将量子计算模拟平台分为了三类,分别为:量子云服务模拟平台、本地运行的量子计算模拟平台和后端支持真实量子计算机的量子云平台.每一种类别选取了几种典型的平台进行了分析,总结了量子计算模拟平台发展的特点和趋势,提出了未来应重点发展的方向和解决的问题,并且提供了量子计算平台的选取建议.
Abstract:Quantum computing simulation platforms running on traditional computers have the quantum computing functions, which is an effective way to promote the development of quantum computing software, algorithms and hardware at the current immature stage of the real quantum computer. Quantum computing simulation platforms are classified for different users, including quantum cloud service simulation platforms, locally running quantum software platforms, and cloud platforms that have quantum computer support. Several typical platforms are analyzed for each kind of quantum computing simulation platforms, the characteristics and the development tendency of quantum computing simulation platforms are summarized as well as the problems to be solved. Furthermore, suggestions for the selection of quantum computing platforms are provided, which can be the guidance for researchers who are interested in quantum computing and can be helpful for develop quantum computing applications.
-
Key words:
- quantum computing /
- simulation platform /
- quantum cloud service
-
表 1 Qibo不同后端实现方式的功能比较
Table 1. Comparison of different backend implementations of Qibo
Native Custom 后端名称 defaulteinsum matmuleinsum custom 是否支持GPU运行方式 √ √ 是否支持分布式运行方式 √ 是否支持测量操作 √ √ 是否支持控制门 √ √ 是否支持密度矩阵操作/噪声模拟 √ 是否支持量子线路的门融合优化 √ √ 是否支持反向传播 √ 表 2 Aspen-8处理器相干时间及操作执行时间
Table 2. Aspen-8 coherence time and operation execution time
Rigetti Aspen-8 时间/μs T1 Lifetime 29 T2 Lifetime 18 单量子门操作 0.060 双量子门操作 0.144 读出操作 1.68 寄存器重置操作 10 表 3 Braket硬件平台量子计算云服务收费标准
Table 3. Service charging of Braket
硬件供应商 系列名称 单任务价格 单shot价格 D-Wave 2000Q $0.300 00 $0.000 19 D-Wave Advantage $0.300 00 $0.000 19 IonQ IonQ device $0.300 00 $0.010 00 Rigetti Aspen-8 $0.300 00 $0.000 35 表 4 各量子模拟器的数值精度、运行方式、运行效率对比
Table 4. Comparison of accuracy, operation Mode and efficiency of various quantum simulators
模拟器及版本 数值精度 运行方式 运行时间/s 资源占用率/% Cirq 0.9.1 single CPU单线程 208.2 99.7 TFQ 0.3.1 single CPU多线程 279.0 98.9 Qiskit 0.17.0 double CPU多线程 76.330 97.5 PyQuil 2.28.0 double CPU单线程 1545.6 22.5 Quest 3.2.0 single CPU多线程 117.3 95.6 Quest 3.2.0 single GPU 8.34 99.8 -
[1] PAUL T. Quantum computation and quantum information[J]. Mathematical Structures in Computer Science, 2007, 17(6): 1115. DOI: 10.1017/S0960129507006317. [2] DEUTSCH D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 400(1818): 97-117. DOI: 10.1098/rspa.1985.0070. [3] 华为云. HiQ量子计算云平台[EB/OL]. (2020-09-01)[2021-02-19]. https://hiq.huaweicloud.com.Huaweicloud. HiQ quantum computing cloud platform[EB/OL]. (2020-09-01)[2021-02-19]. https://hiq.huaweicloud.com. [4] 合肥本源量子计算科技有限责任公司. 本源量子云[EB/OL]. (2020-09-05)[2021-02-19]. http://www.originqc.com.cn.Originqc. Originqc cloud[EB/OL]. (2020-09-05)[2021-02-19]. http://www.originqc.com.cn. [5] Baidu Institute of Quantum Computing. Paddle quantum[EB/OL]. (2020-04-04)[2021-02-19]. https://github.com/PaddlePaddle/Quantum. [6] CHEN J X, ZHANG F, HUANG C, et al. Classical simulation of intermediate-size quantum circuits[J]. arXiv: 1805.01450, 2018. [7] EFTHYMIOU S, RAMOS-CALDERER S, BRAVO-PRIETO C, et al. Qibo: a framework for quantum simulation with hardware acceleration[J]. Quantum Science and Technology, 2020. 7(1): 015018. DOI: 10.1088/2058-9565/ac39f5. [8] JONES T, BROWN A, BUSH I, et al. QuEST and high performance simulation of quantum computers[J]. Scientific Reports, 2019, 9(1): 10736. DOI: 10.1038/s41598-019-47174-9. [9] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature Communications, 2014, 5: 4213. DOI: 10.1038/ncomms5213. [10] BONAMI P, CORNUÉJOLS G, LODI A, et al. A Feasibility Pump for mixed integer nonlinear programs[J]. Mathematical Programming, 2009, 119(2): 331-352. DOI: 10.1007/s10107-008-0212-2. [11] Amazon Web Services. Amazon braket[EB/OL]. (2021-02-01)[2021-02-19]. https://amazonaws-china.com/cn/braket. [12] Amazon Web Services. Amazon braket quantum computers: D-wave[EB/OL]. (2021-02-01)[2021-02-19]. https://amazonaws-china.com/cn/braket/hardware-providers/dwave. [13] Amazon Web Services. Amazon braket quantum computers: IonQ[EB/OL]. (2021-02-01)[2021-02-19]. https://amazonaws-china.com/cn/braket/hardware-providers/ionq. [14] Amazon Web Services. Amazon braket quantum computers: rigetti[EB/OL]. (2021-02-01)[2021-02-19]. https://amazonaws-china.com/cn/braket/hardware-providers/rigetti. [15] Xanadu. Quantum computational advantage on Xanadu Cloud[EB/OL]. (2020-09-01)[2021-02-19]. https://www.xanadu.ai. [16] Xanadu. Millions of qubits powered by light[EB/OL]. (2020-09-01)[2021-02-19]. https://www.xanadu.ai/hardware. [17] Microsoft. The new era of quantum[EB/OL]. (2019-12-02)[2021-02-19]. https://azure.microsoft.com/en-us/services/quantum. [18] IBM. Real quantum computers. Right at your fingertips[EB/OL]. (2020-04-02)[2021-02-19]. https://quantum-computing.ibm.com. [19] IBM. IBM Quantum compute resources[EB/OL]. (2020-04-02)[2021-02-19]. https://quantum-computing.ibm.com/services/resources/docs/runtime/manage/systems. [20] TheCirq Developers. How to cite Cirq[EB/OL]. (2019-06-02)[2021-02-19]. https://github.com/quantumlib/Cirq. [21] BROUGHTON M, VERDON G, MCCOURT T, et al. TensorFlow quantum: a software framework for quantum machine learning[Z]. arXiv: 2003.02989, 2020. [22] ALEKSANDROWICZ G, ALEXANDER T, BARKOUTSOS P, et al. Qiskit: an open-source framework for quantum computing (0.7.2)[J]. Zenodo, 2019. DOI: 10.5281/zenodo.2562110. [23] SMITH R S, CURTIS M J, ZENG W J. A practical quantum instruction set architecture[J]. arXiv: 1608.03355, 2017. [24] SMELYANSKIY M, SAWAYA N P D, ASPURU-GUZIK A. qHiPSTER: the quantum high performance software testing environment[J]. arXiv: 1601.07195, 2016. [25] 唐磊, 马钟, 李申, 等. 天基智能计算技术现状与发展趋势[J]. 微电子学与计算机, 2022, 39(4): 1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1229.TANG L, MA Z, LI S, et al. The present situation and developing trends of space-based intelligent computing technology[J]. Microelectronics & Computer, 2022, 39(4): 1-8. DOI: 10.19304/J.ISSN1000-7180.2021.1229. [26] 周兴社, 武文亮. 无人系统群体智能及其研究进展[J]. 微电子学与计算机, 2021, 38(12): 1-7. DOI: 10.19304/J.ISSN1000-7180.2021.1171.ZHOU X S, WU W L. Unmanned system swarm intelligence and its research progresses[J]. Microelectronics & Computer, 2021, 38(12): 1-7. DOI: 10.19304/J.ISSN1000-7180.2021.1171. -