The Apply of LOD Effects and WPE Effect in Nanometer Process PDK
-
摘要:
本文研究了自主开发的40 nm工艺PDK中的LOD效应和WPE效应.LOD参数SA和WPE参数left影响CMOS器件特性, 尤其饱和电流Idsat和阈值电压VTH.随着SA减小, NMOS的Idsat减小4.25%而VTH增大2.79%;PMOS的电参数与SA关系曲线与NMOS的一致, 但比NMOS趋势要强, Idsat减小8.32%而VTH增大6.78%;并解释了LOD效应的物理机制.随着left的减小, NMOS的Idsat减小9.03%而VTH增大12.5%;PMOS的电参数与left关系曲线比NMOS的要弱, Idsat减小8.50%而VTH增大4.61%, 并提出了WPE效应下器件电参数变化原因.在纳米工艺PDK中, LOD效应和WPE效应的准确应用可以更好地模拟器件性能并改善电路设计精度.
Abstract:In this paper, We research LOD and WPE effects of self-developed 40nm process PDK.The parameter SA of LOD effect and the parameter left of WPE effect influence the characteristics of CMOS device, especially the saturation current Idsat and the threshold voltage VTH. With the decrease of SA, Idsat of NMOS decreases by 4.25% and VTH increases by 2.79%.The relationship between electrical parameters and SA of PMOS is consistent with that of NMOS, but the trend is stronger than NMOS, Idsat decreases by 8.32% and VTH increases by 6.78%. The physical mechanism of LOD effect is explained.With the decrease of left, the Idsat of NMOS decreases by 9.03% and VTH increases by 12.5%.The relationship between the electrical parameters of PMOS and left is weaker than that of NMOS, Idsat decreases by 8.50%, and VTH increases by 4.61%.The cause that the electrical parameters change under WPE effect is proposed. In the nanometer process PDK, the accurate application of LOD and WPE effects can better simulate device performance, and improve the precision of circuit.
-
Key words:
- PDK /
- LOD /
- WPE /
- Nanometer Process
-
表 1 不同SA尺寸下N/PMOS电参数
SA/μm Idsat_N/μA VTH_N/mV |Idsat_P|/μA |VTH_P|/mV 0.12 524.188 508.467 257.604 549.887 1 544.84 496.235 278.327 518.889 2 546.481 495.272 279.967 516.447 3 547.036 494.946 280.521 515.623 4 547.315 494.783 280.8 515.209 5 547.483 494.684 280.967 514.956 表 2 不同left尺寸下N/PMOS电参数
left/μm Idsat_N/mA VTH_N/mV |Idsat_P|/μA |VTH_P|/mV 0.3 476.875 572.016 235.699 575.233 0.5 505.722 520.679 248.245 559.686 1 519.981 511.237 255.469 552.109 1.5 523.033 509.226 257.018 550.496 2 524.188 508.467 257.604 549.887 -
[1] Zhang Y, Liu B, Yang B, et al. CMOS Op-amp circuit synthesis with geometric propramming models for layout-dependent effects [C]// Thirteenth International Symposium on Quality Electronic Design (ISQED). Santa Clara, CA, USA: IEEE, 2012: 464-469. [2] Li R Y, Tao J J, Yang T, et al. A systematic study of layout proximity effects for 28nm Poly/SiON logic technology [C]// China Semiconductor Technology International Conference (CSTIC). Shanghai, China: IEEE, 2015: 1-4. [3] P.G.Drennan, M.L.Kniffin, D.R.Locascio. Implications of proximity effects for analog design[C]// IEEE Custom Integrated Circuits Conference. San Jose, CA, USA: IEEE, 2006: 169-176. [4] C. Ndiaye, V. Huard, R. Bertholon, et al. Layout Dependent Effect: Impact on device performance and reliability in recent CMOS node[C]// 2016 IEEE International Integrated Reliability Workshop (IIRW). South Lake Tahoe, CA, USA : IEEE, 2016: 24-28. [5] Hung-Chih Ou, Kai-Han Tseng, Jhao-Yan Liu, et al. Layout-Dependent Effects-Aware Analytical Analog Placement[J]. IEEE Transactions on Computer-Aided design of integrated circuits and systems, 2016, 8(35): 1243-1254. http://ieeexplore.ieee.org/document/7167374/ [6] SMIC. TD-LO28-SP-2001. 28nm Poly SiON Low Power 1P10M 1.05V/1.8V SPICE Model(Version 1.1) [S]. Joe Li, Aug 2008: 49-54. [7] Yi-Ming Sheu, Ke-Wei Su, Shiyang Tian, et al. Modeling the Well_Edge Proximity Effect in Highly Scaled MOSFETs[J]. IEEE Transactions on Electron Devices, 2006, 11(53): 831-834. https://www.ir.nctu.edu.tw/bitstream/11536/11577/1/000241805300017.pdf -